Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Multiple Enzymatic Defects in Mitochondria in Hematological Cells of Patients with Primary Sideroblastic Anemia
Yosuke Aoki
Yosuke Aoki
Published July 1, 1980
Citation Information: J Clin Invest. 1980;66(1):43-49. https://doi.org/10.1172/JCI109833.
View: Text | PDF
Research Article

Multiple Enzymatic Defects in Mitochondria in Hematological Cells of Patients with Primary Sideroblastic Anemia

  • Text
  • PDF
Abstract

Activities of mitochondrial enzymes in blood cells from 69 patients with primary sideroblastic anemia were determined to elucidate the pathogenesis of the disease. In erythroblasts of patients with primary acquired type the activities of both δ-aminolevulinic acid synthetase and mitochondrial serine protease were inevitably decreased. The susceptibility to the protease of apo-δ-aminolevulinic acid synthetase prepared from erythroblasts of patients with this type was within the normal range, in contrast to that of pyridoxine-responsive anemia. The activities of mitochondrial enzymes such as cytochrome oxidase, serine protease, and oligomycin-sensitive ATPase, except citrate synthetase, were usually decreased in mature granulocytes of the patients. Patients with hereditary sideroblastic anemia also had decreased δ-aminolevulinic acid synthetase activity in erythroblasts, and decreased serine protease activity in both erythroblasts and mature granulocytes. Mature granulocytes obtained from patients with pyridoxine-responsive anemia before therapy had decreased cytochrome oxidase activity, however, the activity increased to a normal level when the patients were in remission. The activities of other mitochondrial enzymes in mature granulocytes were within normal range in these patients before pyridoxine therapy. The activities of these mitochondrial enzymes in lymphocytes were within normal range in all groups of patients with primary sideroblastic anemia.

Authors

Yosuke Aoki

×

Usage data is cumulative from September 2024 through September 2025.

Usage JCI PMC
Text version 80 2
PDF 37 3
Scanned page 153 0
Citation downloads 39 0
Totals 309 5
Total Views 314
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts