Activities of mitochondrial enzymes in blood cells from 69 patients with primary sideroblastic anemia were determined to elucidate the pathogenesis of the disease. In erythroblasts of patients with primary acquired type the activities of both δ-aminolevulinic acid synthetase and mitochondrial serine protease were inevitably decreased. The susceptibility to the protease of apo-δ-aminolevulinic acid synthetase prepared from erythroblasts of patients with this type was within the normal range, in contrast to that of pyridoxine-responsive anemia. The activities of mitochondrial enzymes such as cytochrome oxidase, serine protease, and oligomycin-sensitive ATPase, except citrate synthetase, were usually decreased in mature granulocytes of the patients. Patients with hereditary sideroblastic anemia also had decreased δ-aminolevulinic acid synthetase activity in erythroblasts, and decreased serine protease activity in both erythroblasts and mature granulocytes. Mature granulocytes obtained from patients with pyridoxine-responsive anemia before therapy had decreased cytochrome oxidase activity, however, the activity increased to a normal level when the patients were in remission. The activities of other mitochondrial enzymes in mature granulocytes were within normal range in these patients before pyridoxine therapy. The activities of these mitochondrial enzymes in lymphocytes were within normal range in all groups of patients with primary sideroblastic anemia.
Yosuke Aoki
Usage data is cumulative from September 2024 through September 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 80 | 2 |
37 | 3 | |
Scanned page | 153 | 0 |
Citation downloads | 39 | 0 |
Totals | 309 | 5 |
Total Views | 314 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.