Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Myotonic muscular dystrophy: defective phospholipid metabolism in the erythrocyte plasma membrane.
J E Grey, … , H J Gitelman, A D Roses
J E Grey, … , H J Gitelman, A D Roses
Published June 1, 1980
Citation Information: J Clin Invest. 1980;65(6):1478-1482. https://doi.org/10.1172/JCI109812.
View: Text | PDF
Research Article

Myotonic muscular dystrophy: defective phospholipid metabolism in the erythrocyte plasma membrane.

  • Text
  • PDF
Abstract

Myotonic muscular dystrophy (MyD) is a systemic genetic disorder that is thought to result from a generalized cellular membrane defect although the exact nature of this defect is unknown. This study examines two calcium-dependent membrane processes that have been observed in erythrocytes from healthy individuals: calcium-stimulated phosphatidic acid accumulation and calcium-induced potassium leak. We find that erythrocytes from MyD patients, in contrast to controls, have markedly impaired phosphatidic acid accumulations while maintaining normal potassium leaks. The calcium uptakes and ATP contents of MyD erythrocytes are not different from controls. We conclude that phospholipid metabolism is altered in MyD erythrocytes. The specificity of this abnormality and its relationship to altered muscular function are not known.

Authors

J E Grey, H J Gitelman, A D Roses

×

Usage data is cumulative from January 2022 through January 2023.

Usage JCI PMC
Text version 81 0
PDF 4 5
Scanned page 58 0
Citation downloads 8 0
Totals 151 5
Total Views 156
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts