Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109804

Decreased Lysosomal Dipeptidyl Aminopeptidase I Activity in Cultured Human Skin Fibroblasts in Duchenne's Muscular Dystrophy

Benjamin B. Gelman, Linda Papa, Michael H. Davis, and Eric Gruenstein

Department of Biological Chemistry, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267

Find articles by Gelman, B. in: PubMed | Google Scholar

Department of Biological Chemistry, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267

Find articles by Papa, L. in: PubMed | Google Scholar

Department of Biological Chemistry, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267

Find articles by Davis, M. in: PubMed | Google Scholar

Department of Biological Chemistry, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267

Find articles by Gruenstein, E. in: PubMed | Google Scholar

Published June 1, 1980 - More info

Published in Volume 65, Issue 6 on June 1, 1980
J Clin Invest. 1980;65(6):1398–1406. https://doi.org/10.1172/JCI109804.
© 1980 The American Society for Clinical Investigation
Published June 1, 1980 - Version history
View PDF
Abstract

Several lysosomal enzymes were assayed in cultured human skin fibroblasts from patients with Duchenne's muscular dystrophy (DMD) and age- and sex-matched control patients (N). The activity of four glycosidases, cathepsin B1, and total autoproteolysis at pH 4.0 were unchanged between the groups, but dipeptidyl aminopeptidase I (DAP-I, or cathepsin C) in the DMD cells was found to be only 30% as active as in the control cells (P < 0.003). This difference is not the result of a redistribution or loss of enzyme during homogenization because the difference occurs in all homogenate fractions. DAP-I activity existing in N and DMD fibroblasts behaves identically with respect to activation by chloride ion, activation by the sulfhydryl reducing agent dithiothreitol, changes in hydrogen ion concentration (pH), changes in substrate concentration (i.e., apparent Km values), and changes in temperature (i.e., apparent activation energies). Mixtures of N and DMD cell sonicates display an additivity in DAP-I activity. These results support the conclusion that the catalytic function of the DAP-I molecule is equivalent between N and DMD fibroblasts, and that the decrease in tissue-specific DAP-I activity probably results from the fact that fewer enzyme molecules are present in the DMD cells. These results are also an indication that these nonmuscle cells are expressing some of the phenotypic aspects of the genetic defect in DMD. Cultured human skin fibroblasts may therefore be a useful cellular model in DMD research.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1398
page 1398
icon of scanned page 1399
page 1399
icon of scanned page 1400
page 1400
icon of scanned page 1401
page 1401
icon of scanned page 1402
page 1402
icon of scanned page 1403
page 1403
icon of scanned page 1404
page 1404
icon of scanned page 1405
page 1405
icon of scanned page 1406
page 1406
Version history
  • Version 1 (June 1, 1980): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts