Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109791

Leucine Oxidation and Protein Turnover in Clofibrate-induced Muscle Protein Degradation in Rats

Harbhajan S. Paul and Siamak A. Adibi

Gastrointestinal and Nutrition Unit, Montefiore Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213

Find articles by Paul, H. in: PubMed | Google Scholar

Gastrointestinal and Nutrition Unit, Montefiore Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213

Find articles by Adibi, S. in: PubMed | Google Scholar

Published June 1, 1980 - More info

Published in Volume 65, Issue 6 on June 1, 1980
J Clin Invest. 1980;65(6):1285–1293. https://doi.org/10.1172/JCI109791.
© 1980 The American Society for Clinical Investigation
Published June 1, 1980 - Version history
View PDF
Abstract

Treatment of hyperlipidemia with clofibrate may result in development of a muscular syndrome. Our previous investigation (1979. J. Clin. Invest.64: 405.) showed that chronic administration of clofibrate to rats causes myotonia and decreases glucose and fatty acid oxidation and total protein of skeletal muscle. In the present experiments we have investigated amino acid and protein metabolism in these rats. Clofibrate administration decreased the concentration of all three branched-chain amino acids without affecting those of others in muscle. Studies to examine the mechanism of decreases in muscle concentrations of branched-chain amino acids showed the following: (a) Plasma concentration of leucine was decreased, whereas there was no significant change in the concentration of isoleucine and valine. (b) Liver concentrations of all three branched-chain amino acids remained unaltered. (c) The uptake of cycloleucine (a nonmetabolizable analogue of leucine) by both muscle and liver was unaffected. (d) The percentage of a trace amount of injected [1-14C]leucine expired as 14CO2 in 1 h was significantly increased. (e) The capacity of muscle homogenate for α-decarboxylation of leucine was enhanced, whereas that of liver was unaffected. (f) The activity of leucine transaminase was unaffected, whereas that of α-ketoisocaproate dehydrogenase was increased in muscle.

Studies of protein synthesis, carried out as incorporation of leucine into protein and corrected for differences in specific activity, showed no alteration in liver but enhanced synthesis in muscle of clofibrate-fed rats. Clofibrate stimulated muscle protein degradation, which was demonstrated by increased tyrosine release from gastrocnemius muscle slices and by increased urinary excretion of 3-methylhistidine.

We conclude that (a) clofibrate treatment increased branched-chain amino acid oxidation by increasing the activity of branched-chain α-ketoacid dehydrogenase in the muscle, (b) increased oxidation results in selective decreases in the concentration of these amino acids in muscle, and (c) decreases in branched-chain amino acid concentration may be responsible for increased protein degradation in muscle.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1285
page 1285
icon of scanned page 1286
page 1286
icon of scanned page 1287
page 1287
icon of scanned page 1288
page 1288
icon of scanned page 1289
page 1289
icon of scanned page 1290
page 1290
icon of scanned page 1291
page 1291
icon of scanned page 1292
page 1292
icon of scanned page 1293
page 1293
Version history
  • Version 1 (June 1, 1980): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts