Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Potentiation of cholecystokinin-induced exocrine secretion by both exogenous and endogenous insulin in isolated and perfused rat pancreata.
A Saito, J A Williams, T Kanno
A Saito, J A Williams, T Kanno
View: Text | PDF
Research Article

Potentiation of cholecystokinin-induced exocrine secretion by both exogenous and endogenous insulin in isolated and perfused rat pancreata.

  • Text
  • PDF
Abstract

Using an isolated perfused rat pancreas preparation, the interrelationship between the endocrine and exocrine portions of the pancreas were studied. Addition of exogenous rat insulin (1-20 mU/ml) to the perfusing solution potentiated the action of cholecystokinin (CCK) (1 mU/ml) to increase both pancreatic juice flow and the release of the enzyme, amylase. Raising the glucose concentration in the perfusing solution from 2.5 to 17.5 mM both increased endogenous insulin release and potentiated the CCK-induced exocrine secretory response. Two lines of evidence indicated that this effect of glucose on the exocrine pancreas was mediated by endogenous insulin release. First, the addition of comparable amounts of xylose or galactose to the perfusion medium neither released insulin nor potentiated the CCK-induced response. Second, epinephrine blocked the effect of high glucose on both insulin release and potentiation of CCK action. Epinephrine alone did not affect the action of CCK. The magnitude of the exocrine response induced by high glucose was comparable to that of 2.5 mU/ml exogenous insulin. It seems possible that pancreatic acinar cells can be exposed to insulin levels of this magnitude in situ.

Authors

A Saito, J A Williams, T Kanno

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 185 8
PDF 51 7
Scanned page 213 0
Citation downloads 85 0
Totals 534 15
Total Views 549
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts