Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109718

Epinephrine-induced Insulin Resistance in Man

David C. Deibert and Ralph A. Defronzo

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510

Find articles by Deibert, D. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510

Find articles by Defronzo, R. in: JCI | PubMed | Google Scholar

Published March 1, 1980 - More info

Published in Volume 65, Issue 3 on March 1, 1980
J Clin Invest. 1980;65(3):717–721. https://doi.org/10.1172/JCI109718.
© 1980 The American Society for Clinical Investigation
Published March 1, 1980 - Version history
View PDF
Abstract

Endogenous release of epinephrine after stress as well as exogenous epinephrine infusion are known to result in impaired glucose tolerance. Previous studies of man and animals have demonstrated that this effect of epinephrine results from inhibition of insulin secretion and augmentation of hepatic glucose production. However, the effect of epinephrine on tissue sensitivity to insulin, and the relative contributions of peripheral vs. hepatic resistance to impaired insulin action, have not been defined. Nine young normal-weight subjects were studied with the insulin clamp technique. Plasma insulin was raised by ∼100 μU/ml while plasma glucose concentration was maintained at basal levels by a variable glucose infusion. Under these conditions of euglycemia, the amount of glucose metabolized equals the glucose infusion rate and is a measure of tissue sensitivity to insulin. Subjects received four studies: (a) insulin (42.6 mU/m2·min), (b) insulin plus epinephrine (0.05 μg/kg·min), (c) insulin plus epinephrine plus propranolol (1.43 μg/kg·min), and (d) insulin plus propranolol. During insulin administration alone, glucose metabolism averaged 5.49±0.58 mg/kg·min. When epinephrine was infused with insulin, glucose metabolism fell by 41% to 3.26 mg/kg·min (P < 0.001). After insulin alone, hepatic glucose production declined by 92% to 0.16±0.08 mg/kg·min. Addition of epinephrine was associated with a delayed and incomplete suppression of glucose production (P < 0.01) despite plasma insulin levels >100 μU/ml. When propranolol was administered with epinephrine, total glucose metabolism was restored to control values and hepatic glucose production suppressed normally. Propranolol alone had no effect on insulin-mediated glucose metabolism. These results indicate that epinephrine, acting primarily through a β-adrenergic receptor, markedly impairs tissue sensitivity to an increase in plasma insulin levels, and that this effect results from both peripheral and hepatic resistance to the action of insulin.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 717
page 717
icon of scanned page 718
page 718
icon of scanned page 719
page 719
icon of scanned page 720
page 720
icon of scanned page 721
page 721
Version history
  • Version 1 (March 1, 1980): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts