Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Time-course of insulin degradation in perifused isolated rat adipose cells.
C T Huber, … , S S Solomon, W C Duckworth
C T Huber, … , S S Solomon, W C Duckworth
Published February 1, 1980
Citation Information: J Clin Invest. 1980;65(2):461-468. https://doi.org/10.1172/JCI109689.
View: Text | PDF
Research Article

Time-course of insulin degradation in perifused isolated rat adipose cells.

  • Text
  • PDF
Abstract

Isolated fat cells from rat epididymal adipose tissue were preincubated with 50 microU/ml (0.33 nM) 125I-insulin at 23 degrees C to enhance binding while retarding degradation. The fat cells were then perifused at that temperature to remove unbound 125I-insulin, and fractions of perifusate were collected each minute. The temperature of the cells in the perifusion chamber was then rapidly increased to 37 degrees C, and perifusion was continued. The fat cells degraded a portion of the bound 125I-insulin measured by loss of immunoprecipitability with excess antisera to insulin. The percentage of degraded 125I-insulin dissociating from the fat cells increased progressively with time at 37 degrees C, and the rateof dissociation of 125I-insulin degradation products showed a first-order dependence on the amount of degraded 125I-insulin bound to the cells. To explain this first-order dependence it is necessary to postulate a "processing" step after binding and before degradation. The first-order rate constant at 37 degrees C is 0.023 +/- 0.004 min-1. Fast and slow dissociating components can be resolved from kinetic plots of the dissociation of undegraded 125I-insulin (immunoprecipitable) from the isolated fat cells. The antilipolytic activity of the 125I-insulin on epinephrine-stimulated lipolysis is evident over much of the time-course of dissociation. A model for the degradation of insulin bound to isolated fat cells is discussed.

Authors

C T Huber, S S Solomon, W C Duckworth

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 86 1
PDF 41 9
Scanned page 284 1
Citation downloads 53 0
Totals 464 11
Total Views 475
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts