Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Adaptations of alpha2- and beta-cells of rat and mouse pancreatic islets to starvation, to refeeding after starvation, and to obesity.
F M Matschinsky, … , A Pagliara, W T Norfleet
F M Matschinsky, … , A Pagliara, W T Norfleet
Published January 1, 1980
Citation Information: J Clin Invest. 1980;65(1):207-218. https://doi.org/10.1172/JCI109652.
View: Text | PDF
Research Article

Adaptations of alpha2- and beta-cells of rat and mouse pancreatic islets to starvation, to refeeding after starvation, and to obesity.

  • Text
  • PDF
Abstract

The effects of starvation and refeeding and of obesity on pancreatic alpha2- and beta-cell responses to glucose or tolbutamide were studied with the isolated rat or mouse pancreas perfused with an amino acid mixture in the presence and absence of glucose. It was observed that the physiological adaptation to a regimen of fasting and realimentation and to obesity differed greatly in the two types of endocrine cells. Whereas beta-cells of rats showed a dramatic reduction of glucose- and tolbutamide-stimulated insulin release during starvation that was reversed by refeeding, alpha2-cells preserved their response to stimulators and inhibitors during this experimental manipulation. Amino acid stimulation of glucagon release occurred equally well with the pancreas from fed and starved rats and was suppressed efficiently by glucose and tolbutamide in both nutritional states. Surprisingly, the rate of onset of glucose suppression of alpha2-cells was significantly higher in the fasted than in the fed state. This glucose hypersensitivity was apparent 2 d after after food deprivation and had disappeared again on the 2nd d of refeeding. In the pancreas from animals starved for 3 d, glucose and tolbutamide suppression of alpha2-cells took place in the absence of demonstrable changes of insulin release. In the isolated perfused pancreas taken from the hyperphagic obese hyperglycemic mouse (C57 Black/6J; ob/ob), the observed rate of insulin secretion as a result of a combined stimulus of amino acids and glucose and of glucagon release stimulated by amino acids was about four times higher than achieved by the pancreas of lean controls. However, glucose was unable to suppress the alpha2-cells in the pancreas of obese animals, in spite of the hypersection of the beta-cells, again in contrast to the alpha2-cells of controls that were readily inhibited by glucose. These data imply that the acute suppression of alpha2-cells by glucose is largely independent of a concomitant surge of extracellular insulin levels and that the adaptation of the islet organ to starvation leads to decreased glucose sensitivity of beta-cells, which contrasts with an improved glucose responsiveness of alpha2-cells. However, hyperphagia, which is assumed to be the primary abnormality in the ob/ob mouse, leads to overproduction of insulin and glucagon by the pancreas while greatly reducing the alpha2-cell sensitivity to glucose. An attempt is made to incorporate these data on starvation, refeeding, and obesity, as well as previous results with experimental diabetes, in a comprehensive picture describing a regulative principle underlying the glucose responsivness of alpha2-cells.

Authors

F M Matschinsky, C Rujanavech, A Pagliara, W T Norfleet

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 98 13
PDF 38 17
Scanned page 401 5
Citation downloads 55 0
Totals 592 35
Total Views 627
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts