Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109623

Regulation of the Conversion of Thyroxine to Triiodothyronine in the Perfused Rat Liver

Anthony S. Jennings, Duncan C. Ferguson, and Robert D. Utiger

Endocrine Section, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104

Find articles by Jennings, A. in: PubMed | Google Scholar

Endocrine Section, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104

Find articles by Ferguson, D. in: PubMed | Google Scholar

Endocrine Section, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104

Find articles by Utiger, R. in: PubMed | Google Scholar

Published December 1, 1979 - More info

Published in Volume 64, Issue 6 on December 1, 1979
J Clin Invest. 1979;64(6):1614–1623. https://doi.org/10.1172/JCI109623.
© 1979 The American Society for Clinical Investigation
Published December 1, 1979 - Version history
View PDF
Abstract

This study was undertaken to determine what factors control the conversion of thyroxine (T4) to triiodothyronine (T3) in rat liver under conditions approximating those found in vivo. Conversion of T4 to T3 was studied in the isolated perfused rat liver, a preparation in which the cellular and structural integrity is maintained and that can perform most of the physiologic functions of the liver. The perfused liver readily extracted T4 from perfusion medium and converted it to T3. Production of T3 by the perfused liver was a function of the size of the liver, the uptake of T4 by the liver, and the presence of T4-5′-deiodinase activity. Production of T3 was increased by increasing the uptake of T4 by liver, which could be accomplished by increasing the liver size, by increasing the perfusate T4 concentration, or by decreasing the perfusate albumin concentration. These changes occurred without altering the conversion of T4 to T3. The liver had a large capacity for extracting T4 and for T4-5′-deiodination to T3, which was not saturated at a T4 concentration of 60 μg/dl. Production of T3 was decreased by inhibiting hepatic T4-5′-deiodinase with propylthiouracil, which decreased T3 production by decreasing the conversion of T4 to T3. Propylthiouracil did not alter hepatic T4 uptake.

Fasting resulted in a progressive decrease in hepatic T4 uptake to 42% of control levels by the 3rd d of fasting; this was accompanied by a proportionate decrease in T3 production. The rate of conversion of T4 to T3 did not change during fasting. When T4 uptake in 2-d-fasted rat livers was raised to levels found in fed rats by increasing the perfusate T4 concentration from 10 to 30 μg/dl, T3 production returned to normal. Again, no change in the rate of conversion of T4 to T3 was observed.

These results indicate that the decreased hepatic T3 production during fasting primarily results from decreased hepatic uptake of T4, rather than from changes in T4-5′-deiodinase activity. Thus, these studies have delineated a new mechanism that functions independently of enzyme quantity or activity whereby production of T3 from T4 is regulated.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1614
page 1614
icon of scanned page 1615
page 1615
icon of scanned page 1616
page 1616
icon of scanned page 1617
page 1617
icon of scanned page 1618
page 1618
icon of scanned page 1619
page 1619
icon of scanned page 1620
page 1620
icon of scanned page 1621
page 1621
icon of scanned page 1622
page 1622
icon of scanned page 1623
page 1623
Version history
  • Version 1 (December 1, 1979): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts