Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Effect of Central Catecholamine Depletion on the Osmotic and Nonosmotic Stimulation of Vasopressin (Antidiuretic Hormone) in the Rat
Thomas R. Miller, William A. Handelman, Patricia E. Arnold, Keith M. McDonald, Perry B. Molinoff, Robert W. Schrier
Thomas R. Miller, William A. Handelman, Patricia E. Arnold, Keith M. McDonald, Perry B. Molinoff, Robert W. Schrier
View: Text | PDF
Research Article

Effect of Central Catecholamine Depletion on the Osmotic and Nonosmotic Stimulation of Vasopressin (Antidiuretic Hormone) in the Rat

  • Text
  • PDF
Abstract

The central nervous system (CNS) mechanism(s) for the release of antidiuretic hormone (ADH) by various stimuli is unknown. In this study, the role of CNS catecholamines in effecting ADH release was examined in conscious rats 10-14 d after the cerebroventricular injection of 6-hydroxydopamine (6-OHDA). This dose of 6-OHDA caused a 67% depletion of brain tissue norepinephrine and only 3% depletion of heart norepinephrine, as compared with controls, which were injected with the vehicle buffer alone. Either intravenous 3% saline (osmotic stimulus) or intraperitoneal hyperoncotic dextran (nonosmotic stimulus) was administered to water-diuresing rats through indwelling catheters. Neither of these maneuvers changed arterial pressure, pulse, or inulin clearance in control or 6-OHDA rats. The 3% saline caused similar increases in plasma osmolality (15 mosmol/kg H2O) in control and 6-OHDA rats. The control rats, however, increased urinary osmolality (Uosm) to 586 mosmol/kg H2O, whereas 6-OHDA rats increased Uosm only to 335 mosmol/kg H2O (P < 0.005). These changes in Uosm were accompanied by an increase in plasma ADH to 7.6 μIU/ml in control animals vs. 2.9 μIU/ml in 6-OHDA rats (P < 0.005). All waterdiuresing animals had undetectable plasma ADH levels. Dextran-induced hypovolemia caused similar decrements (− 10%) in blood volume in both control and 6-OHDA animals, neither of which had significant changes in plasma osmolality. This nonosmotic hypovolemic stimulus caused an increase in Uosm to 753 mosmol/kg H2O in control rats, whereas Uosm in 6-OHDA rats increased to only 358 mosmol/kg H2O (P < 0.001). At the same time, ADH levels also were significantly greater in Cont rats (2.4 μIU/ml) than in the 6-OHDA animals (0.69 μIU/ml; P < 0.05). These results therefore suggest that CNS catecholamines may play an important role in mediating ADH release in response to both osmotic and nonosmotic (hypovolemic) stimuli.

Authors

Thomas R. Miller, William A. Handelman, Patricia E. Arnold, Keith M. McDonald, Perry B. Molinoff, Robert W. Schrier

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 229 12
PDF 75 5
Scanned page 220 2
Citation downloads 85 0
Totals 609 19
Total Views 628
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts