Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mechanisms of Killing of Newborn Larvae of Trichinella spiralis by Neutrophils and Eosinophils: KILLING BY GENERATORS OF HYDROGEN PEROXIDE IN VITRO
David A. Bass, Pamela Szejda
David A. Bass, Pamela Szejda
Published December 1, 1979
Citation Information: J Clin Invest. 1979;64(6):1558-1564. https://doi.org/10.1172/JCI109616.
View: Text | PDF

Mechanisms of Killing of Newborn Larvae of Trichinella spiralis by Neutrophils and Eosinophils: KILLING BY GENERATORS OF HYDROGEN PEROXIDE IN VITRO

  • Text
  • PDF
Abstract

Eosinophil and/or neutrophil leukocytes appear to have important roles in host defense against invasive, migratory helminth infestations, but the mechanisms of larval killing by leukocytes are uncertain. This study examines killing of newborn (migratory phase) larvae of Trichinella spiralis during incubation with granule preparations of human eosinophils or neutrophils and generators of hydrogen peroxide (glucose-glucose oxidase) (G-GO) or superoxide and hydrogen peroxide (xanthine-xanthine oxidase). Larvae were killed by either hydrogen peroxide-generating system in a concentration-dependent manner. Direct enumeration of surviving larvae after incubation in microtiter wells containing the appropriate reagents was used in assess larval killing. Verification of the microplate assay was demonstrated by complete loss of larval ability to incorporate [3H]deoxyglucose and loss of infectivity after incubation in comparable concentrations of G-GO. Larvae were highly sensitive to oxidative products; significant killing occurred after incubation with 0.12 mU glucose oxidase and complete killing occurred with 0.5 mU. Comparable killing of bacteria required over 60 mU glucose oxidase. At 5 mU glucose oxidase, killing was complete after 6 h of incubation. Killing by G-GO was inhibited by catalase but not by boiled catalase or superoxide dismutase and was enhanced by azide. Addition of peroxidase in granule pellet preparations of eosinophils or neutrophils did not enhance killing by G-GO. These data indicate a remarkable susceptibility of newborn larvae of T. spiralis to the hydrogen peroxide generated by neutrophil and eosinophil leukocytes.

Authors

David A. Bass, Pamela Szejda

×

Full Text PDF

Download PDF (1.09 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts