Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109598

Physiological and Pharmacological Influences on Thyroxine to 3,5,3′-Triiodothyronine Conversion and Nuclear 3,5,3′-Triiodothyronine Binding in Rat Anterior Pituitary

R. G. Cheron, M. M. Kaplan, and P. R. Larsen

Howard Hughes Medical Institute Laboratory, Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Thyroid Unit, Department of Medicine, Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Harvard Medical School, Boston, Massachusetts 02115

Find articles by Cheron, R. in: PubMed | Google Scholar

Howard Hughes Medical Institute Laboratory, Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Thyroid Unit, Department of Medicine, Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Harvard Medical School, Boston, Massachusetts 02115

Find articles by Kaplan, M. in: PubMed | Google Scholar

Howard Hughes Medical Institute Laboratory, Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Thyroid Unit, Department of Medicine, Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Harvard Medical School, Boston, Massachusetts 02115

Find articles by Larsen, P. in: PubMed | Google Scholar

Published November 1, 1979 - More info

Published in Volume 64, Issue 5 on November 1, 1979
J Clin Invest. 1979;64(5):1402–1414. https://doi.org/10.1172/JCI109598.
© 1979 The American Society for Clinical Investigation
Published November 1, 1979 - Version history
View PDF
Abstract

Our recent in vivo studies have suggested that intrapituitary l-thyroxine (T4) to 3,5,3′-triiodo-l-thyronine (T3) conversion with subsequent nuclear binding of T3 is an important pathway by which circulating T4 can inhibit thyrotropin release. The present studies were performed to evaluate various physiological and pharmacological influences on these two processes in rat anterior pituitary tissue. Intact pituitary fragments were incubated in buffer—1% bovine serum albumin containing 0.14 ng/ml [131I]T3 and 3.8 ng/ml [125I]T4. Nuclei were isolated after 3 h of incubation and the bound iodothyronines identified by paper chromatography. There was 0.3-1% [125I]T3 contaminating the medium [125I]T4, and this did not change during incubation. Nuclear [125I]T4 was not decreased by 650-fold excesses of medium T3 or T4, suggesting that it was nonspecifically bound. The ratio of nuclear to medium [131I]- and [125I]T3 were expressed as nuclear counts per minute per milligram wet weight of tissue:counts per minute per microliter medium. Intrapituitary T4 to T3 conversion was evidenced by the fact that the nuclear:medium (N:M) ratio for [131I]T3 was 0.45±0.21, whereas that for [125I]T3 was 2.23±1.28 (mean±SD, n = 51). A ratio (R), the N:M [125I]T3 divided by the N:M [131I]T3, was used as an index of intrapituitary T4 to T3 conversion. Increasing medium T3 concentrations up to 50 ng/ml caused a progressive decrease in the N:M ratio for both T3 isotopes, but no change in the value for R, indicating that both competed for the same limited-capacity nuclear receptors. Increasing concentrations of medium T4 caused no change in the N:M [131I]T3 but did cause a significant decrease in R in three of four experiments. These results suggest saturation of T4-5′-monodeiodination occurred at lower T4 concentrations than saturation of nuclear T3 binding sites. In hypothyroid rats, the N:M ratios for both [131I]T3 and [125I]T3 were increased (P < 0.005), but R was three-fold higher than in controls (P < 0.005). Animals given 10 μg T4/100 g body wt per d for 5 d had significantly decreased N:M ratios for both [131I]T3 and [125I]T3, as well as a decreased value for R. In fasted rats, neither N:M ratio was depressed, although hepatic T4 to T3 conversion in the same animals was 50% of control (P < 0.005). Iopanoic acid (13 μM), but not 6-n-propylthiouracil (29 μM), decreased the N:M [125I]T3 with a significant decrease in the value for R (P < 0.025 or less). Neither sodium iodide (6 μM) nor thyrotropin-releasing hormone (7-700 nM) affected the T3 N:M ratios. These results indicate that intrapituitary T4 to T3 conversion is stimulated in hypothyroidism and depressed in T4-treated animals, whereas opposite changes occur in hepatic T4-5′-monodeiodination. Unlike liver, anterior pituitary T4-5′-monodeiodination is not affected by fasting or incubation with 6-n-propyl-2-thiouracil, but T4 to T3 conversion is inhibited in both by iopanoic acid. These results indicate that there are important differences between anterior pituitary and other tissues in the regulation of T4-5′-monodeiodination.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1402
page 1402
icon of scanned page 1403
page 1403
icon of scanned page 1404
page 1404
icon of scanned page 1405
page 1405
icon of scanned page 1406
page 1406
icon of scanned page 1407
page 1407
icon of scanned page 1408
page 1408
icon of scanned page 1409
page 1409
icon of scanned page 1410
page 1410
icon of scanned page 1411
page 1411
icon of scanned page 1412
page 1412
icon of scanned page 1413
page 1413
icon of scanned page 1414
page 1414
Version history
  • Version 1 (November 1, 1979): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts