Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI109557

Chemotactic Factor Inactivation by the Myeloperoxidase-Hydrogen Peroxide-Halide System: AN INFLAMMATORY CONTROL MECHANISM

Robert A. Clark

Evans Memorial Department of Clinical Research, Boston University Medical Center, Boston, Massachusetts 02118

Department of Medicine, Boston University Medical Center, Boston, Massachusetts 02118

Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98195

Find articles by Clark, R. in: PubMed | Google Scholar

Published October 1, 1979 - More info

Published in Volume 64, Issue 4 on October 1, 1979
J Clin Invest. 1979;64(4):913–920. https://doi.org/10.1172/JCI109557.
© 1979 The American Society for Clinical Investigation
Published October 1, 1979 - Version history
View PDF
Abstract

Polymorphonuclear leukocytes may modulate the acute inflammatory response by the secretion of enzymes capable of inactivating mediators of inflammation. The ability of the myeloperoxidase-H2O2-halide system of the neutrophil to inactivate chemoattractants was examined using both a radioassay and a morphologic assay of chemotaxis. Incubation of either a complement-derived agent, C5a, or a synthetic formyl-methionyl peptide chemoattractant with the myeloperoxidase system for 15 min at 37°C resulted in essentially complete loss of chemotactic activity. Inactivation was dependent on enzymatically active myeloperoxidase, H2O2 or a peroxide-generating enzyme system, and a halide cofactor. It was blocked by agents which inhibit peroxidase (azide) or degrade H2O2 (catalase). Inactivation of chemoattractants was time-dependent, reaching maximal levels within 1-5 min, and temperature-dependent with no significant inactivation occurring at 0°C. H2O2 alone had no significant inactivating ability at concentrations as high as 10 mM, whereas in the presence of myeloperoxidase and a halide, 0.1 μM H2O2 showed significant activity and 10 μM H2O2 caused complete inactivation. On a molar basis, the order of effectiveness of the halide cofactors was Br− > I− > Cl−, although only chloride was fully active at physiologic concentrations. Neutrophils stimulated by phagocytosis or by membraneperturbing agents secrete enzymatic constituents, including myeloperoxidase, and metabolic products such as H2O2. Thus, it is suggested that the myeloperoxidase system acting at an extracellular site serves as an inflammatory control mechanism by virtue of its ability to inactivate neutrophil chemoattractants.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 913
page 913
icon of scanned page 914
page 914
icon of scanned page 915
page 915
icon of scanned page 916
page 916
icon of scanned page 917
page 917
icon of scanned page 918
page 918
icon of scanned page 919
page 919
icon of scanned page 920
page 920
Version history
  • Version 1 (October 1, 1979): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts