Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Reconstitution of spectrin-deficient, spherocytic mouse erythrocyte membranes.
S B Shohet
S B Shohet
Published August 1, 1979
Citation Information: J Clin Invest. 1979;64(2):483-494. https://doi.org/10.1172/JCI109486.
View: Text | PDF
Research Article

Reconstitution of spectrin-deficient, spherocytic mouse erythrocyte membranes.

  • Text
  • PDF
Abstract

To study directly the role of spectrin in erythrocyte membrane function, we have designed a reconstituted membrane system using erythrocyte membranes from spectrin-deficient mice and purified spectrin from normal mice. The normal spectrin is inserted into the spectrin-deficient spherocytes by exchange hemolysis. Thereafter, raising the ionic strength and temperature reseals the cells and, with time, facilitates binding of the spectrin to the spectrin-deficient membranes. The binding is apparently specific as shown by its dependence upon the concentration of undenatured spectrin and the concentration of salt used, as well as by the immunofluorescent appearance of the reconstituted cells after treatment with specific antispectrin antibody. In terms of in vitro cellular behavior, the reconstituted preparations show marked changes in comparison to the untreated spherocytes. In particular, membrane stability, as measured by the reduction of myelin figure formation and lipid loss, is considerably enhanced. In addition, membrane fusion, which occurs readily with the untreated spherocytes, is virtually eliminated. Finally, the osmotic behavior of the native spherocytes is appreciably altered, such that the early phase of osmotically induced swelling, as measured in a high-speed stop-flow apparatus, is delayed and modified. Taken together, these findings indicate specific roles for spectrin in the stabilization of the erythrocyte membrane, in the limitation of membrane fusion, and in the modulation of the membrane's response to osmotic stress.

Authors

S B Shohet

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts