Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI109464

Role of Glucagon, Catecholamines, and Growth Hormone in Human Glucose Counterregulation: EFFECTS OF SOMATOSTATIN AND COMBINED α- AND β-ADRENERGIC BLOCKADE ON PLASMA GLUCOSE RECOVERY AND GLUCOSE FLUX RATES AFTER INSULIN-INDUCED HYPOGLYCEMIA

Robert A. Rizza, Philip E. Cryer, and John E. Gerich

Diabetes and Metabolism Research Laboratory, Mayo Medical School and Mayo Clinic, Rochester, Minnesota 55901

Endocrine Research Unit, Department of Medicine, Mayo Medical School and Mayo Clinic, Rochester, Minnesota 55901

Endocrine Research Unit, Department of Physiology, Mayo Medical School and Mayo Clinic, Rochester, Minnesota 55901

Metabolism Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110

Find articles by Rizza, R. in: PubMed | Google Scholar

Diabetes and Metabolism Research Laboratory, Mayo Medical School and Mayo Clinic, Rochester, Minnesota 55901

Endocrine Research Unit, Department of Medicine, Mayo Medical School and Mayo Clinic, Rochester, Minnesota 55901

Endocrine Research Unit, Department of Physiology, Mayo Medical School and Mayo Clinic, Rochester, Minnesota 55901

Metabolism Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110

Find articles by Cryer, P. in: PubMed | Google Scholar

Diabetes and Metabolism Research Laboratory, Mayo Medical School and Mayo Clinic, Rochester, Minnesota 55901

Endocrine Research Unit, Department of Medicine, Mayo Medical School and Mayo Clinic, Rochester, Minnesota 55901

Endocrine Research Unit, Department of Physiology, Mayo Medical School and Mayo Clinic, Rochester, Minnesota 55901

Metabolism Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110

Find articles by Gerich, J. in: PubMed | Google Scholar

Published July 1, 1979 - More info

Published in Volume 64, Issue 1 on July 1, 1979
J Clin Invest. 1979;64(1):62–71. https://doi.org/10.1172/JCI109464.
© 1979 The American Society for Clinical Investigation
Published July 1, 1979 - Version history
View PDF
Abstract

To further characterize mechanisms of glucose counterregulation in man, the effects of pharmacologically inducd deficiencies of glucagon, growth hormone, and catecholamines (alone and in combination) on recovery of plasma glucose from insulin-induced hypoglycemia and attendant changes in isotopically ([3-3H]glucose) determined glucose fluxes were studied in 13 normal subjects. In control studies, recovery of plasma glucose from hypoglycemia was primarily due to a compensatory increase in glucose production; the temporal relationship of glucagon, epinephrine, cortisol, and growth hormone responses with the compensatory increase in glucose appearance was compatible with potential participation of all these hormones in acute glucose counterregulation. Infusion of somatostatin (combined deficiency of glucagon and growth hormone) accentuated insulin-induced hypoglycemia (plasma glucose nadir: 36±2 ng/dl during infusion of somatostatin vs. 47±2 mg/dl in control studies, P < 0.01) and impaired restoration of normoglycemia (plasma glucose at min 90: 73±3 mg/dl at end of somatostatin infusion vs. 92±3 mg/dl in control studies, P<0.01). This impaired recovery of plasma glucose was due to blunting of the compensatory increase in glucose appearance since glucose disappearance was not augmented, and was attributable to suppression of glucagon secretion rather than growth hormone secretion since these effects of somatostatin were not observed during simultaneous infusion of somatostatin and glucagon whereas infusion of growth hormone along with somatostatin did not prevent the effect of somatostatin. The attenuated recovery of plasma glucose from hypoglycemia observed during somatostatin-induced glucagon deficiency was associated with plasma epinephrine levels twice those observed in control studies. Infusion of phentolamine plus propranolol (combined α-and β-adrenergic blockade) had no effect on plasma glucose or glucose fluxes after insulin administration. However, infusion of somatostatin along with both phentolamine and propranolol further impaired recovery of plasma glucose from hypoglycemia compared to that observed with somatostatin alone (plasma glucose at end of infusions: 52±6 mg/dl for somatostatin-phentolamine-propranolol vs. 72±5 mg/dl for somatostatin alone, P < 0.01); this was due to further suppression of the compensatory increase in glucose appearance (maximal values: 1.93±0.41 mg/kg per min for somatostatin-phentolamine-propranolol vs. 2.86±0.32 mg/kg per min for somatostatin alone, P < 0.05). These results indicate that in man (a) restoration of normoglycemia after insulin-induced hypoglycemia is primarily due to a compensatory increase in glucose production; (b) intact glucagon secretion, but not growth hormone secretion, is necessary for normal glucose counterregulation, and (c) adrenergic mechanisms do not normally play an essential role in this process but become critical to recovery from hypoglycemia when glucagon secretion is impaired.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 62
page 62
icon of scanned page 63
page 63
icon of scanned page 64
page 64
icon of scanned page 65
page 65
icon of scanned page 66
page 66
icon of scanned page 67
page 67
icon of scanned page 68
page 68
icon of scanned page 69
page 69
icon of scanned page 70
page 70
icon of scanned page 71
page 71
Version history
  • Version 1 (July 1, 1979): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts