Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI109401

Insulin Secretion and Metabolism during the Perinatal Period in the Rat: EVIDENCE FOR A PLACENTAL ROLE IN FETAL HYPERINSULINEMIA

Françoise R. Sodoyez-Goffaux, Jean C. Sodoyez, and Claudine J. De Vos

Department of Pediatrics, University of Liege, B-4020 Liege, Belgium

Department of Internal Medicine, University of Liege, B-4020 Liege, Belgium

Find articles by Sodoyez-Goffaux, F. in: PubMed | Google Scholar

Department of Pediatrics, University of Liege, B-4020 Liege, Belgium

Department of Internal Medicine, University of Liege, B-4020 Liege, Belgium

Find articles by Sodoyez, J. in: PubMed | Google Scholar

Department of Pediatrics, University of Liege, B-4020 Liege, Belgium

Department of Internal Medicine, University of Liege, B-4020 Liege, Belgium

Find articles by De Vos, C. in: PubMed | Google Scholar

Published June 1, 1979 - More info

Published in Volume 63, Issue 6 on June 1, 1979
J Clin Invest. 1979;63(6):1095–1102. https://doi.org/10.1172/JCI109401.
© 1979 The American Society for Clinical Investigation
Published June 1, 1979 - Version history
View PDF
Abstract

To better understand why plasma immunoreactive insulin (IRI) concentration is high in the rat fetus during the last 3 d of gestation and why fetal hyperinsulinemia abruptly subsides after birth, insulin secretion and metabolic clearance rates were estimated in fetuses and nursed pups.

Intravenously injected [125I]monoiodoinsulin was cleared from the plasma of prematurely delivered pups at least as rapidly as from that of 7- to 10-d-old pups, suggesting that fetal hyperinsulinemia is not a result of slow clearance of the hormone. The fetal liver bound 35% of the injected label within 3 min, and binding was saturable. The uptake of radioactivity by the fetal kidney was nonsaturable and much lower than that of adult rat kidney.

Isolated fetal islets were already reactive to glucose on the 19th d of gestation. Pancreatic insulin secretory capacity was estimated by measuring (a) the insulin release of isolated islets incubated in the presence of 2.8 mM glucose, (b) the insulin content of the same islets, and (c) the total insulin extracted from the pancreas, using the formula (a × c)/b. 2 d before birth, the pancreatic insulin secretory capacity was high, accounting for fetal hyperinsulinemia. It was even higher after birth, not accounting for the postnatal decrease in plasma IRI concentration.

Pups delivered by caesarian section 1 d before term exhibited a brisk decrease in plasma IRI concentration when the cord was cut. By contrast, if the feto-placental unit was removed from the dam, maintaining fetal blood circulation through the placenta, fetal plasma IRI concentration remained as high as in utero. These experiments suggest that a placental factor stimulates fetal insulin secretion. After birth, when the cord is cut, insulin secretion is rapidly turned off, and the pups switch from a state of unlimited fuel supply by the mother to a state of fuel saving.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1095
page 1095
icon of scanned page 1096
page 1096
icon of scanned page 1097
page 1097
icon of scanned page 1098
page 1098
icon of scanned page 1099
page 1099
icon of scanned page 1100
page 1100
icon of scanned page 1101
page 1101
icon of scanned page 1102
page 1102
Version history
  • Version 1 (June 1, 1979): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts