Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109377

Inhibition of the Action of Nonsuppressible Insulin-Like Activity on Isolated Rat Fat Cells by Binding to its Carrier Protein

J. Zapf, E. Schoenle, G. Jagars, I. Sand, J. Grunwald, and E. R. Froesch

Metabolic Unit, Department of Medicine, University Hospital, CH-8091 Zürich, Switzerland

Find articles by Zapf, J. in: PubMed | Google Scholar

Metabolic Unit, Department of Medicine, University Hospital, CH-8091 Zürich, Switzerland

Find articles by Schoenle, E. in: PubMed | Google Scholar

Metabolic Unit, Department of Medicine, University Hospital, CH-8091 Zürich, Switzerland

Find articles by Jagars, G. in: PubMed | Google Scholar

Metabolic Unit, Department of Medicine, University Hospital, CH-8091 Zürich, Switzerland

Find articles by Sand, I. in: PubMed | Google Scholar

Metabolic Unit, Department of Medicine, University Hospital, CH-8091 Zürich, Switzerland

Find articles by Grunwald, J. in: PubMed | Google Scholar

Metabolic Unit, Department of Medicine, University Hospital, CH-8091 Zürich, Switzerland

Find articles by Froesch, E. in: PubMed | Google Scholar

Published May 1, 1979 - More info

Published in Volume 63, Issue 5 on May 1, 1979
J Clin Invest. 1979;63(5):1077–1084. https://doi.org/10.1172/JCI109377.
© 1979 The American Society for Clinical Investigation
Published May 1, 1979 - Version history
View PDF
Abstract

Nonsuppressible insulin-like activity extracted and purified from human serum (NSILA-S) mimics all insulin-like effects in vitro and, after injection, in vivo in the presence of excess insulin antibodies. However, there is no evidence that it exerts acute insulin-like effects in its native form in the circulation, where it is almost completely bound to a specific large molecular weight carrier protein. In this paper we show that partially purified NSILA-S-carrier protein, devoid of endogenous insulin-like activity, inhibits the stimulatory effect of NSILA-S, but not of insulin, on 3-0-methylglucose transport and on lipogenesis from [U-14C]glucose in isolated rat fat cells. Concomitantly, it prevents binding of 125I-labeled NSILA-S to the insulin receptor and to the NSILA-S-binding site.

The following explanation is, therefore, offered for the absence of acute insulin-like effects of native NSILA-S in vivo: In native serum NSILA-S occurs almost exclusively as NSILA-S-carrier complex. According to recent findings the passage of this complex through blood capillaries is restricted. The present results indicate that, in addition, it is metabolically inactive, or, at least, possesses reduced metabolic activity. The well-known phenomenon that whole serum, nevertheless, exerts pronounced nonsuppressible insulin-like effects on adipose tissue in vitro seems, therefore, to be mainly caused by the presence of a large molecular weight insulin-like protein not identical to the NSILA-S-carrier complex.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1077
page 1077
icon of scanned page 1078
page 1078
icon of scanned page 1079
page 1079
icon of scanned page 1080
page 1080
icon of scanned page 1081
page 1081
icon of scanned page 1082
page 1082
icon of scanned page 1083
page 1083
icon of scanned page 1084
page 1084
Version history
  • Version 1 (May 1, 1979): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts