Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Deep nephron function after release of acute unilateral ureteral obstruction in the young rat.
J Buerkert, … , J Prasad, S Klahr
J Buerkert, … , J Prasad, S Klahr
Published December 1, 1978
Citation Information: J Clin Invest. 1978;62(6):1228-1239. https://doi.org/10.1172/JCI109243.
View: Text | PDF
Research Article

Deep nephron function after release of acute unilateral ureteral obstruction in the young rat.

  • Text
  • PDF
Abstract

The effects of acute unilateral ureteral obstruction (UUO) of 18 h duration on deep nephron function was evaluated in 14 weanling rats with the technique of micropuncture. After release of UUO, 3.4 +/- 0.66% (SE) of the filtered water remained at the tip of the collecting duct nearly fivefold greater than in controls (0.75 +/- 0.10%). Similar differences were seen in fractional sodium that remained at this site. The ratio of tubular fluid osmolality to that of plasma was also reduced in the UUO group (1.53 +/- 0.06 vs. 4.60 +/- 0.26 in controls, P less than 0.001). Single nephron glomerular filtration rate of cortical and deep nephrons was significantly less (P less than 0.001) after release of UUO. Although the percentage of filtering nephrons was significantly reduced in both nephron populations, the decline in glomerular filtration rate was greater in cortical than in juxtamedullary nephrons (cortical:juxtamedullary nephrons = 27.6 +/- 4.5% vs. 53.3 +/- 5.2% in controls, P less than 0.005) which suggests that single nephron glomerular filtration rate is redistributed to deep nephrons after release of UUO. In contrast to cortical nephrons, the amount of tubular fluid which remains near the bend of the loop of Henle of deep nephrons was greater after release of UUO. This appeared to be the result of a decrease in the reabsorption of both water (tubular fluid:plasma inulin = 2.41 +/- 0.16 vs. 7.94 +/- 0.69 in controls, P less than 0.001) and sodium (52.3 +/- 4% vs. 40.7 +/- 2.9% of the filtered sodium in controls, P less than 0.02). It is suggested that this altered reabsorption occurs along both the proximal tubule and descending limb of the loop of Henle of juxtamedullary nephrons. Inner medullary plasma flow (IMPF), as measured with the [125I]albumin-accumulation technique, was significantly depressed before release of UUO, but exceeded control values 90 min postrelease. Such changes imply that the filtration fraction of deep nephrons is decreased and that physical factors in the proximal tubular reabsorption of sodium have been altered. When papillary solute content was measured before release of UUO it was low (428 +/- 23 vs. 1,205 +/- 106 mosmol/kg in controls, P less than 0.001) which indicates that the decline in papillary osmolality is not a consequence of the increased IMPF seen after ureteral release, but rather precedes it. In fact, the decline in papillary osmolality may contribute to the increase in IMPF after release of UUO and to the decreased reabsorption of fluid along the descending limb of the loop of Henle.

Authors

J Buerkert, D Martin, M Head, J Prasad, S Klahr

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 154 2
PDF 46 10
Scanned page 423 0
Citation downloads 51 0
Totals 674 12
Total Views 686
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts