Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109163

l-Triiodothyronine and l-Reverse-Triiodothyronine Generation in the Human Polymorphonuclear Leukocyte

Kenneth A. Woeber and Betty A. Maddux

Department of Medicine, Mount Zion Hospital and Medical Center and University of California, San Francisco, California 94120

Find articles by Woeber, K. in: PubMed | Google Scholar

Department of Medicine, Mount Zion Hospital and Medical Center and University of California, San Francisco, California 94120

Find articles by Maddux, B. in: PubMed | Google Scholar

Published September 1, 1978 - More info

Published in Volume 62, Issue 3 on September 1, 1978
J Clin Invest. 1978;62(3):577–584. https://doi.org/10.1172/JCI109163.
© 1978 The American Society for Clinical Investigation
Published September 1, 1978 - Version history
View PDF
Abstract

Extrathyroidal monodeiodination of l-thyroxine (T4) is the principal source of l-triiodothyronine (T3) and l-reverse-triiodothyronine (rT3) production. To define some of the cellular factors involved, we examined T3 and rT3 generation from added nonradioactive T4 in human polymorphonuclear leukocytes, using radioimmunoassays to quantify the T3 and rT3 generated. Under optimum incubation conditions which included a pH of 6.5 in sucrose-acetate buffer, the presence of dithiothreitol as a sulfhydryl-group protector, and incubation in an hypoxic atmosphere, significant net generation of T3 and rT3 was observed. Of the several subcellular fractions studied, the particulate fraction obtained by centrifugation at 27,000 g was found to possess the highest T3- and rT3-generating activities per unit quantity of protein. With respect to T3 generation from substrate T4, the Km was 5 μM and the Vmax was 7.2 pmol/min per mg protein. Propylthiouracil, methimazole, and prior induction of phagocytosis inhibited both T3 and rT3 generation, but T3 generation was inhibited to a greater extent. rT3, in a concentration equimolar to that of substrate T4, did not alter T3 generation, but inhibited T3 generation when the molar ratio of rT3 to T4 approached 10:1. Under the incubation conditions employed, particulate fractions of leukocytes obtained from five cord blood samples displayed an essentially normal relationship between T3- and rT3-generating activities, despite the distinctly divergent serum T3 and rT3 concentrations in these samples. From our findings, we draw the following conclusions: (a) the human polymorphonuclear leukocyte possesses the ability to generate T3 and rT3 from substrate T4; (b) the T3- and rT3-generating activities are associated principally with the 27,000 g particulate fraction and display enzymic characteristics with a sulfhydryl-group requirement; (c) T3-generating activity appears to be more susceptible to inhibitory influences than rT3-generating activity; and (d) in cord blood leukocytes, the putative enzymes catalyzing T3 and rT3 generation appear to be functionally intact under the experimental conditions employed.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 577
page 577
icon of scanned page 578
page 578
icon of scanned page 579
page 579
icon of scanned page 580
page 580
icon of scanned page 581
page 581
icon of scanned page 582
page 582
icon of scanned page 583
page 583
icon of scanned page 584
page 584
Version history
  • Version 1 (September 1, 1978): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts