Other investigators have shown that fructose infusion in normal man and rats acutely depletes hepatic ATP and Pi and increases the rate of uric acid formation by the degradation of preformed nucleotides. We postulated that a similar mechanism of ATP depletion might be present in patients with glucose-6-phosphatase deficiency (GSD-I) as a result of ATP consumption during glycogenolysis and resulting excess glycolysis. The postulate was tested by measurement of: (a) hepatic content of ATP, glycogen, phosphorylated sugars, and phosphorylase activities before and after increasing glycolysis by glucagon infusion and (b) plasma urate levels and urate excretion before and after therapy designed to maintain blood glucose levels above 70 mg/dl and thus prevent excess glycogenolysis and glycolysis.
Harry L. Greene, Frederick A. Wilson, Patrick Hefferan, Annie B. Terry, Jose Roberto Moran, Alfred E. Slonim, Thomas H. Claus, Ian M. Burr
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 261 | 20 |
54 | 27 | |
Scanned page | 341 | 3 |
Citation downloads | 49 | 0 |
Totals | 705 | 50 |
Total Views | 755 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.