Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109120

Survival of 125iodine-labeled Factor VIII in normals and patients with classic hemophilia. Observations on the heterogeneity of human Factor VIII.

J Over, J J Sixma, M H Bruïne, M C Trieschnigg, R A Vlooswijk, N H Beeser-Visser, and B N Bouma

Find articles by Over, J. in: PubMed | Google Scholar

Find articles by Sixma, J. in: PubMed | Google Scholar

Find articles by Bruïne, M. in: PubMed | Google Scholar

Find articles by Trieschnigg, M. in: PubMed | Google Scholar

Find articles by Vlooswijk, R. in: PubMed | Google Scholar

Find articles by Beeser-Visser, N. in: PubMed | Google Scholar

Find articles by Bouma, B. in: PubMed | Google Scholar

Published August 1, 1978 - More info

Published in Volume 62, Issue 2 on August 1, 1978
J Clin Invest. 1978;62(2):223–234. https://doi.org/10.1172/JCI109120.
© 1978 The American Society for Clinical Investigation
Published August 1, 1978 - Version history
View PDF
Abstract

Radiolabeled human Factor VIII was used to study its survival in normals and patients with classic hemophilia, and to study the heterogeneity of Factor VIII; Purified Factor VIII was radiolabeled with 125iodine (125I-VIII) without loss of its structural integrity. The survival of 125I-VIII was studied in six normals and six hemophiliacs of whom four of the hemophiliacs had received transfusions with normal cryoprecipitate before the 125I-VIII infusion. No significant difference was observed between the disappearance of Factor VIII coagulant activity and radioactivity in these hemophiliacs. 125I-VIII in plasma showed a biphasic disappearance with an average t1/2 of 2.9 +/- 0.4 h (SEM) for the first phase and 18.6 +/- 0.7 h (SEM) for the second phase, respectively. The survival of 125I-VIII was similar comparing normals and hemophiliacs. The highest molecular weight forms of Factor VIII disappear more rapidly than the lower molecular weight ones. This was established by analysis of the fractions obtained by gel chromatography of plasma collected at several times after infusion and by analysis of the in vivo disappearance of three subfractions of Factor VIII. The fraction of 125I-VIII binding to platelets in the presence of ristocetin (containing the highest molecular weight forms of Factor VIII including the ristocetin cofactor) represented about 50% of the radioactivity present in plasma after infusion and showed a t 1/2 of 11.7 +/- 0.9 h (SEM) for the second phase. The fraction, which was recovered in cryoprecipitate of the recipient's plasma, represented about 90% of the initial radioactivity and showed a t 1/2 of 16.3 +/- 0.8 h (SEM) for the second phase. The fraction of 125I-VIII remaining in the cryosupernatant plasma (containing low molecular weight forms of Factor (VIII) showed a t 1/2 of 27.2 +/- 1.1 h (SEM). The first phase of the disappearance of 125I-VIII is caused in part by the disappearance of the highest molecular weight forms, which are possibly removed by the reticuloendothelial system.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 223
page 223
icon of scanned page 224
page 224
icon of scanned page 225
page 225
icon of scanned page 226
page 226
icon of scanned page 227
page 227
icon of scanned page 228
page 228
icon of scanned page 229
page 229
icon of scanned page 230
page 230
icon of scanned page 231
page 231
icon of scanned page 232
page 232
icon of scanned page 233
page 233
icon of scanned page 234
page 234
Version history
  • Version 1 (August 1, 1978): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts