Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108997

A Suppressor T Cell of the Mixed Lymphocyte Reaction Specific for the HLA-D Region in Man

Edgar G. Engleman and Hugh O. McDevitt

Division of Immunology, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305

Find articles by Engleman, E. in: PubMed | Google Scholar

Division of Immunology, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305

Find articles by McDevitt, H. in: PubMed | Google Scholar

Published March 1, 1978 - More info

Published in Volume 61, Issue 3 on March 1, 1978
J Clin Invest. 1978;61(3):828–838. https://doi.org/10.1172/JCI108997.
© 1978 The American Society for Clinical Investigation
Published March 1, 1978 - Version history
View PDF
Abstract

The mixed lymphocyte reaction (MLR) is the proliferative response of one individual's lymphocytes cultured in the presence of another individual's lymphocytes. In man, the MLR is elicited by cell surface antigens coded for by the HLA-D gene locus. This locus is among a cluster of genes which are located on the sixth chromosome and which include genes coding for the major histocompatibility antigens HLA-A, B, and C as well as HLA-D. If the stimulator cell possesses D locus antigens not present in the responder, the lymphocytes of the latter will undergo blast transformation resulting in DNA synthesis which can be measured. A vigorous response in the MLR to allogeneic cells is the rule among healthy individuals.

We describe studies of a 23-yr-old man whose lymphocytes respond normally to mitogens and soluble antigens but fail to respond to allogeneic cells in the MLR. His medical history is unremarkable except that he received thymic irradiation as an infant. HLA typing revealed that he is homozygous for HLA-A2, B12, and Cw5 as well as for the D locus antigen Dw4. When his lymphocytes were added to the responder lymphocytes of other persons homozygous for the same HLA antigens, their responses to allogeneic cells but not mitogens were suppressed by 50-95%. Their responses to a soluble antigen, tetanus toxoid, were suppressed to a lesser degree. These inhibitory effects were mediated by a relatively radioresistant thymus-derived (T) lymphocyte.

Further studies of the requirements for MLR suppression revealed that only persons heterozygous or homozygous for the Dw4 antigen were inhibited by the suppressor T cell. This effect was not altered by differences in the HLA-A, B, or C antigens between the suppressor and responder. It is concluded that genes in or near the HLA-D locus code not only for antigens (primarily on bone marrow-derived (B) cells), that elicit the MLR, but also for structures on T cells, or possibly macrophages, which are recognized by MLR suppressor T cells.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 828
page 828
icon of scanned page 829
page 829
icon of scanned page 830
page 830
icon of scanned page 831
page 831
icon of scanned page 832
page 832
icon of scanned page 833
page 833
icon of scanned page 834
page 834
icon of scanned page 835
page 835
icon of scanned page 836
page 836
icon of scanned page 837
page 837
icon of scanned page 838
page 838
Version history
  • Version 1 (March 1, 1978): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts