Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

The Differential Effect of In Vivo Hydrocortisone on the Kinetics of Subpopulations of Human Peripheral Blood Thymus-Derived Lymphocytes
Barton F. Haynes, Anthony S. Fauci
Barton F. Haynes, Anthony S. Fauci
Published March 1, 1978
Citation Information: J Clin Invest. 1978;61(3):703-707. https://doi.org/10.1172/JCI108982.
View: Text | PDF
Research Article

The Differential Effect of In Vivo Hydrocortisone on the Kinetics of Subpopulations of Human Peripheral Blood Thymus-Derived Lymphocytes

  • Text
  • PDF
Abstract

The present study was undertaken to determine the effect of in vivo hydrocortisone on the kinetics of subpopulations of normal human peripheral blood (PB) thymus-derived (T) cells. Normal volunteers received a single i.v. dose of hydrocortisone, and blood was taken just before, as well as 4, 24, and 48 h after hydrocortisone administration. T cells were purified from each specimen, and proportions and absolute numbers of T lymphocytes bearing receptors for the Fc portion of IgG (T·G) and for the Fc portion of IgM (T·M) were enumerated by rosetting T cells with bovine erythrocytes which had been coated with either antibovine erythrocyte IgG or IgM. 4 h after i.v. administration of hydrocortisone, T·M cells decreased from 52 (±5%) to 23 (±6%) of PB T cells (P < 0.01) and the absolute number of T·M cells decreased from 1,028 (±171) per mm3 to 103 (±23) per mm3 (P < 0.001). In contrast, relative proportion of T·G cells increased from 22 (±4%) to 66 (±7%), while the absolute numbers of T·G cells were essentially unchanged (P > 0.2). In vitro studies involving preincubation of T cells with hydrocortisone before rosette determination of T·G or T·M cells demonstrated that the decrease in absolute numbers of T·M cells did not represent hydrocortisone interference with T·M rosette formation, nor did it represent a switch of T·M cells to T·G cells. Thus, administration of hydrocortisone to normal subjects produces a selective depletion from the circulation of T lymphocytes which possess receptors for the Fc portion of IgM (T·M cells) and of T cells which possess no detectable FC receptor (T·non−M, non−G cells). T·G cells are relatively resistant to the lymphopenic effect of hydrocortisone. These data clearly demonstrate that in vivo corticosteroids have a differential effect on the kinetics of identifiable and distinct subsets of cells in the human T-cell class.

Authors

Barton F. Haynes, Anthony S. Fauci

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 152 14
PDF 56 29
Scanned page 201 4
Citation downloads 60 0
Totals 469 47
Total Views 516
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts