Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108978

Reduction by Cobra Venom Factor of Myocardial Necrosis after Coronary Artery Occlusion

Peter R. Maroko, Charles B. Carpenter, Massimo Chiariello, Michael C. Fishbein, Paulo Radvany, James D. Knostman, and Sharon L. Hale

Department of Medicine, Harvard Medical School and Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Department of Pathology, Harvard Medical School and Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Find articles by Maroko, P. in: PubMed | Google Scholar

Department of Medicine, Harvard Medical School and Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Department of Pathology, Harvard Medical School and Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Find articles by Carpenter, C. in: PubMed | Google Scholar

Department of Medicine, Harvard Medical School and Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Department of Pathology, Harvard Medical School and Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Find articles by Chiariello, M. in: PubMed | Google Scholar

Department of Medicine, Harvard Medical School and Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Department of Pathology, Harvard Medical School and Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Find articles by Fishbein, M. in: PubMed | Google Scholar

Department of Medicine, Harvard Medical School and Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Department of Pathology, Harvard Medical School and Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Find articles by Radvany, P. in: PubMed | Google Scholar

Department of Medicine, Harvard Medical School and Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Department of Pathology, Harvard Medical School and Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Find articles by Knostman, J. in: PubMed | Google Scholar

Department of Medicine, Harvard Medical School and Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Department of Pathology, Harvard Medical School and Peter Bent Brigham Hospital, Boston, Massachusetts 02115

Find articles by Hale, S. in: PubMed | Google Scholar

Published March 1, 1978 - More info

Published in Volume 61, Issue 3 on March 1, 1978
J Clin Invest. 1978;61(3):661–670. https://doi.org/10.1172/JCI108978.
© 1978 The American Society for Clinical Investigation
Published March 1, 1978 - Version history
View PDF
Abstract

Components of the complement system are known to play an important role in the cytolytic process and in chemotaxis of leukocytes. Cobra venom factor specifically cleaves C3 activity via activation of the alternative (properdin) complement pathway. It does not act directly on C3. If C3 is involved in tissue necrosis after ischemic injury, cobra venom factor might reduce tissue damage after acute coronary occlusion. Accordingly, in 14 control dogs occlusion of the left anterior descending artery was carried out for 24 h. Epicardial electrograms were recorded 15 min after occlusion, and 24 h later transmural specimens for creatine phosphokinase activity (CPK) and for histological analysis were obtained from the same sites. In another 14 experimental dogs, 20 U/kg cobra venom factor was given intravenously 30 min after occlusion. Serum complement levels fell within 2-4 h to <20% of normal. In the control dogs, the relationship between ST-segment elevation and CPK activity 24 h later was: log CPK = −0.06 ST + 1.48 (n = 111 specimens, 14 dogs, r = 0.77). In the experimental dogs, log CPK = −0.024 ST + 1.46 (n = 111 specimens, 14 dogs, r = 0.60), showing significantly different slopes (P < 0.001), i.e., less CPK depression for any level of ST-segment elevation. Histologically, 69 of 71 sites (97%) with ST-segment elevation exceeding 2 mV in the control dogs showed signs of necrosis 24 h later, whereas in the experimental group only 43 of 79 sites (54%) with abnormal ST-segment elevations showed signs of necrosis (P < 0.0005). At the same time, it was shown that the administration of cobra venom factor did not alter cardiac performance, collateral blood flow to the ischemic myocardium or the clotting system, but infiltration of polymorphonuclear leukocytes into the myocardium was decreased. It is concluded that cobra venom factor, by reducing the amount of C3 and C5 substrate available for chemotactic factor generation, or other as yet undefined mechanisms, protects the ischemic myocardium from undergoing necrosis, as judged by histology and local CPK activity. Hence, a new approach to limiting the extent of myocardial infarcts after experimental coronary occlusion, based upon inhibition of complement-dependent inflammatory processes, is demonstrated.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 661
page 661
icon of scanned page 662
page 662
icon of scanned page 663
page 663
icon of scanned page 664
page 664
icon of scanned page 665
page 665
icon of scanned page 666
page 666
icon of scanned page 667
page 667
icon of scanned page 668
page 668
icon of scanned page 669
page 669
icon of scanned page 670
page 670
Version history
  • Version 1 (March 1, 1978): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts