Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108974

Studies on the Mechanism of Reduced Urinary Osmolality after Exposure of the Renal Papilla

Elaine L. Chuang, H. John Reineck, Richard W. Osgood, Robert T. Kunau Jr., and Jay H. Stein

Division of Renal Diseases, Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas 78284

Find articles by Chuang, E. in: PubMed | Google Scholar

Division of Renal Diseases, Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas 78284

Find articles by Reineck, H. in: PubMed | Google Scholar

Division of Renal Diseases, Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas 78284

Find articles by Osgood, R. in: PubMed | Google Scholar

Division of Renal Diseases, Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas 78284

Find articles by Kunau, R. in: PubMed | Google Scholar

Division of Renal Diseases, Department of Medicine, The University of Texas Health Science Center, San Antonio, Texas 78284

Find articles by Stein, J. in: PubMed | Google Scholar

Published March 1, 1978 - More info

Published in Volume 61, Issue 3 on March 1, 1978
J Clin Invest. 1978;61(3):633–639. https://doi.org/10.1172/JCI108974.
© 1978 The American Society for Clinical Investigation
Published March 1, 1978 - Version history
View PDF
Abstract

Studies were performed in Munich-Wistar rats to determine whether changes in papillary plasma flow might be responsible for the concentrating defect which occurs after exposure of the extrarenal papilla. Papillary plasma flow was measured by 125I-albumin accumulation. Initial studies in hydropenic animals revealed that papillary plasma flow was 40% higher in the kidney with the exposured papilla, 41 vs. 29 ml/min per 100 g of papilla (P < 0.001). This increase in papillary plasma flow was detectable 15 or 45 min after removing the ureter. Because it was unclear whether the rise in papillary plasma flow was a cause or the result of the fall in urine osmolality, similar studies were performed in animals undergoing a water diuresis. In this setting, papillary plasma flow still increased on the exposed side compared to the control side, 81 vs. 60 ml/min per 100 g, despite similarly low urine osmolalities of 155 and 174 mosmol/kg, respectively. This finding is compatible with the possibility that papillary exposure per se causes an increase in papillary plasma flow and that this hemodynamic alteration may lead to a reduction in urinary osmolality secondary to washout of the medullary interstitium. A final group of hydropenic rats was given either indomethacin or meclofenamate before removing the ureter. In these studies, there was no difference in either the papillary plasma flow or the urine osmolality between control and exposed kidneys. It is therefore suggested that opening the ureter induces an increase in papillary plasma flow by some mechanism which may involve an alteration in prostaglandin synthesis.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 633
page 633
icon of scanned page 634
page 634
icon of scanned page 635
page 635
icon of scanned page 636
page 636
icon of scanned page 637
page 637
icon of scanned page 638
page 638
icon of scanned page 639
page 639
Version history
  • Version 1 (March 1, 1978): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts