Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108943

Mechanisms of the Fasting-Induced Increase in Insulin Binding to Rat Adipocytes

Jerrold M. Olefsky and Masashi Kobayashi

Division of Endocrinology and Metabolism, Stanford University School of Medicine, Stanford, California 94305

Palo Alto Veterans Administration Hospital, Palo Alto, California 94304

Find articles by Olefsky, J. in: PubMed | Google Scholar

Division of Endocrinology and Metabolism, Stanford University School of Medicine, Stanford, California 94305

Palo Alto Veterans Administration Hospital, Palo Alto, California 94304

Find articles by Kobayashi, M. in: PubMed | Google Scholar

Published February 1, 1978 - More info

Published in Volume 61, Issue 2 on February 1, 1978
J Clin Invest. 1978;61(2):329–338. https://doi.org/10.1172/JCI108943.
© 1978 The American Society for Clinical Investigation
Published February 1, 1978 - Version history
View PDF
Abstract

Fasting leads to an increase in the ability of adipocytes to bind insulin, and this was accounted for by an increase in the affinity of the receptors for insulin without any change in the number of receptors per cell. Binding affinity can increase because of a decrease in the dissociation rate constant (kd), an increase in the association rate constant (ka), or both. Kinetic studies demonstrated that fasting leads to a striking decrease in the rate at which insulin dissociates from its receptor, and the near two-fold prolongation of the time at which 50% of the bound 125I-insulin dissociates (28±4 vs. 50±5 min) correlated quite well with the two-fold increase in binding affinity. On the other hand, the rate at which insulin associates with its receptor was essentially unchanged. Negatively cooperative interactions between receptors were readily demonstrated in cells from control and fasting animals, and the magnitude and sensitivity of this effect was the same in both groups of cells. It seemed likely that during fasting a change in the concentration of some substrate or hormone could lead to these effects on insulin binding. However, in vitro attempts to recreate the substrate and hormonal changes which occur in fasting produced no evidence to support this idea. In conclusion: (a) fasting leads to an increase in the ability of adipocytes to bind insulin because of an increase in binding affinity; (b) this increase in the affinity of the receptor for insulin was primarily accounted for by a decrease in the rate at which insulin dissociates from its receptors; and (c) fasting did not appreciably alter the negatively cooperative interactions displayed by adipocyte insulin receptors.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 329
page 329
icon of scanned page 330
page 330
icon of scanned page 331
page 331
icon of scanned page 332
page 332
icon of scanned page 333
page 333
icon of scanned page 334
page 334
icon of scanned page 335
page 335
icon of scanned page 336
page 336
icon of scanned page 337
page 337
icon of scanned page 338
page 338
Version history
  • Version 1 (February 1, 1978): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts