Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Reversal of Advanced Digitoxin Toxicity and Modification of Pharmacokinetics by Specific Antibodies and Fab Fragments
Hermann R. Ochs, Thomas W. Smith
Hermann R. Ochs, Thomas W. Smith
View: Text | PDF
Research Article

Reversal of Advanced Digitoxin Toxicity and Modification of Pharmacokinetics by Specific Antibodies and Fab Fragments

  • Text
  • PDF
Abstract

The effects of Fab fragments of high-affinity specific antibodies have been studied in a canine experimental model of lethal digitoxin toxicity. Selected antiserum from sheep immunized and boosted with a digoxin-serum albumin conjugate contained antibodies that cross-reacted with digitoxin with an average intrinsic association constant of 1.4 × 1010 M−1 as determined by equilibrium dialysis. Rapid second-order association kinetics (kf = 3.7 × 106 M−1 per s) and slow dissociation kinetics (kr = 1.9 × 10−4 per s) were documented for the antibody-digitoxin complex. Eight dogs given 0.5 mg/kg digitoxin intravenously developed ventricular tachycardia after 23±4 (SEM) min. Control nonspecific Fab fragments were then given. All animals died an average of 101±36 min after digitoxin administration. Another eight dogs given the same digitoxin dose similarly developed ventricular tachycardia after 28±3 min. This group then received a molar equivalent dose of specific Fab fragments intravenously over 3 min, followed by a 30-min infusion of one-third of the initial dose. All dogs survived. Conducted sinus beats reappeared 18±4 min after initial Fab infusion, and stable normal sinus rhythm was present at 54±16 min. Plasma total digitoxin concentrations increased threefold during the hour after initial Fab infusion, while plasma free digitoxin concentration decreased to less than 0.1 ng/ml. Effects on digitoxin pharmacokinetics of these Fab fragments and the antibody population from which they were derived were further investigated in a primate species. Unlike common laboratory animals previously studied, the rhesus monkey was found to have a prolonged elimination half-life, estimated at 135 and 118 h by radioimmunoassay and [3H]digitoxin measurements, respectively, similar to man and thus providing a clinically relevant experimental model. Intravenous administration of 2 mol of specific Fab fragments per mole of digitoxin 6 h after 0.2 mg of digitoxin produced a rapid 4.3-fold increase in plasma total digitoxin concentration followed by a rapid fall (t½ 4 h) accompanied by a 14-fold enhancement of urinary digitoxin excretion over control values during the 6-h period after Fab was given. Analytical studies were consistent with increased excretion of native digitoxin rather than metabolites, and the glycoside was found in equilibrium dialysis studies to be excreted in the urine in Fab-bound form. Administration of 2 mol of specific antibody binding sites per mole of digitoxin as intact IgG caused a greater and more prolonged increase in plasma total digitoxin concentration, peaking 13-fold above control levels. In contrast to the effects of Fab, however, specific IgG reduced the rate of urinary digitoxin excretion substantially below control values. We conclude that Fab fragments of antibodies with high affinity for digitoxin are capable of rapid reversal of advanced, otherwise lethal digitoxin toxicity, and are capable of reducing the plasma half-life and accelerating urinary excretion of digitoxin.

Authors

Hermann R. Ochs, Thomas W. Smith

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 146 9
PDF 92 11
Scanned page 265 6
Citation downloads 49 0
Totals 552 26
Total Views 578
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts