Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI108855

Osteomalacia Due to 1α,25-Dihydroxycholecalciferol Deficiency: ASSOCIATION WITH A GIANT CELL TUMOR OF BONE

Marc K. Drezner and Mark N. Feinglos

Department of Medicine, Veterans Administration Hospital, Durham, North Carolina 27710

Division of Endocrinology, Veterans Administration Hospital, Durham, North Carolina 27710

Duke University Medical Center, Durham, North Carolina 27710

Find articles by Drezner, M. in: PubMed | Google Scholar

Department of Medicine, Veterans Administration Hospital, Durham, North Carolina 27710

Division of Endocrinology, Veterans Administration Hospital, Durham, North Carolina 27710

Duke University Medical Center, Durham, North Carolina 27710

Find articles by Feinglos, M. in: PubMed | Google Scholar

Published November 1, 1977 - More info

Published in Volume 60, Issue 5 on November 1, 1977
J Clin Invest. 1977;60(5):1046–1053. https://doi.org/10.1172/JCI108855.
© 1977 The American Society for Clinical Investigation
Published November 1, 1977 - Version history
View PDF
Abstract

Oncogenic osteomalacia is a syndrome in which unexplained osteomalacia remits after resection of a coexisting mesenchymal tumor. We have investigated the mechanism by which a giant cell tumor of bone caused biopsy-proved osteomalacia in a 42-yr-old woman. The biochemical abnormalities were: hypophosphatemia; decreased renal tubular maximum for the reabsorption of phosphate per liter of glomerular filtrate; negative calcium and phosphorus balance; hyperaminoaciduria; and subnormal calcemic response to exogenously administered parathyroid hormone. Malabsorption, hypophosphatasia, fluorosis, and acidosis were excluded as causes of the osteomalacia. Serum 25-hydroxycholecalciferol was normal (27±1 ng/ml). However, the serum concentration of 1α,25-dihydroxycholecalciferol was low (1.6±0.1 ng/100 ml). Oral administration of physiological amounts of 1α,25-dihydroxycholecalciferol resulted in resolution of the biochemical abnormalities of the syndrome and healing of the bone pathology. We suggest that tumor-induced inhibition of 1α,25-dihydroxycholecalciferol synthesis caused the osteomalacia. The causal role of the tumor was proved by demonstrating that resection was accompanied by roentgenographic evidence of bone healing and maintenance of normal serum phosphorus; renal tubular maximum for the reabsorption of phosphate; calcium and phosphorus balance; aminoaciduria; and calcemic response to exogenous parathyroid hormone.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1046
page 1046
icon of scanned page 1047
page 1047
icon of scanned page 1048
page 1048
icon of scanned page 1049
page 1049
icon of scanned page 1050
page 1050
icon of scanned page 1051
page 1051
icon of scanned page 1052
page 1052
icon of scanned page 1053
page 1053
Version history
  • Version 1 (November 1, 1977): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts