Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108841

Interrelations of Platelet Aggregation and Secretion

Israel F. Charo, Richard D. Feinman, and Thomas C. Detwiler

Department of Biochemistry, State University of New York Downstate Medical Center, Brooklyn, New York 11203

Find articles by Charo, I. in: PubMed | Google Scholar

Department of Biochemistry, State University of New York Downstate Medical Center, Brooklyn, New York 11203

Find articles by Feinman, R. in: PubMed | Google Scholar

Department of Biochemistry, State University of New York Downstate Medical Center, Brooklyn, New York 11203

Find articles by Detwiler, T. in: PubMed | Google Scholar

Published October 1, 1977 - More info

Published in Volume 60, Issue 4 on October 1, 1977
J Clin Invest. 1977;60(4):866–873. https://doi.org/10.1172/JCI108841.
© 1977 The American Society for Clinical Investigation
Published October 1, 1977 - Version history
View PDF
Abstract

The mechanism of stimulus-response coupling in human platelets was investigated with a new instrument that simultaneously monitors aggregation and secretion in the same sample of plateletrich plasma. When platelets were stimulated by high concentrations of ADP, secretion began only after aggregation was almost complete. With lower concentrations of ADP or with epinephrine, biphasic aggregation was observed, and secretion began simultaneously with, or slightly after, the second phase of aggregation. When platelets were stimulated with high concentrations of γ-thrombin or A23187, secretion and aggregation began essentially together. With very low concentrations of γ-thrombin or A23187, biphasic aggregation was observed with secretion paralleling the second phase. At every concentration of collagen, secretion and aggregation appeared to be parallel events. Under every condition where the beginning of secretion lagged behind aggregation, secretion was dependent upon aggregation and was inhibited by indomethacin; this is referred to as aggregation-mediated platelet activation. When secretion began at the same time as aggregation, it also occurred in the absence of aggregation and was not blocked by indomethacin; this is referred to as directly induced platelet activation. These observations are consistent with a simple model of platelet stimulus-response coupling that includes two mechanisms for activation; aggregation-mediated activation is inhibited by indomethacin, while direct activation does not depend upon aggregation and is not inhibited by indomethacin. Secretion and second wave aggregation appear to be parallel events, with little evidence for second wave aggregation being a consequence of secretion as usually described.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 866
page 866
icon of scanned page 867
page 867
icon of scanned page 868
page 868
icon of scanned page 869
page 869
icon of scanned page 870
page 870
icon of scanned page 871
page 871
icon of scanned page 872
page 872
icon of scanned page 873
page 873
Version history
  • Version 1 (October 1, 1977): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts