Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108764

A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis.

J D McGarry, G P Mannaerts, and D W Foster

Find articles by McGarry, J. in: JCI | PubMed | Google Scholar

Find articles by Mannaerts, G. in: JCI | PubMed | Google Scholar

Find articles by Foster, D. in: JCI | PubMed | Google Scholar

Published July 1, 1977 - More info

Published in Volume 60, Issue 1 on July 1, 1977
J Clin Invest. 1977;60(1):265–270. https://doi.org/10.1172/JCI108764.
© 1977 The American Society for Clinical Investigation
Published July 1, 1977 - Version history
View PDF
Abstract

Studied on the oxidation of oleic and octanoic acids to ketone bodies were carried out in homogenates and in mitochondrial fractions of livers taken from fed and fasted rats. Malonyl-CoA inhibited ketogenesis from the former but not from the latter substrate. The site of inhibition appeared to be the carnitine acyltransferase I reaction. The effect was specific and easily reversible. Inhibitory concentrations were in the range of values obtained in livers from fed rats by others. It is proposed that malonyl-CoA functions as both precursor for fatty acid synthesis and suppressor of fatty acid oxidation. As such, it might be an important element in the carbohydrate-induced sparing of fatty acid oxidation.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 265
page 265
icon of scanned page 266
page 266
icon of scanned page 267
page 267
icon of scanned page 268
page 268
icon of scanned page 269
page 269
icon of scanned page 270
page 270
Version history
  • Version 1 (July 1, 1977): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts