Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Overloading human aortic smooth muscle cells with low density lipoprotein-cholesteryl esters reproduces features of atherosclerosis in vitro.
J L Goldstein, … , S K Basu, M S Brown
J L Goldstein, … , S K Basu, M S Brown
Published June 1, 1977
Citation Information: J Clin Invest. 1977;59(6):1196-1202. https://doi.org/10.1172/JCI108744.
View: Text | PDF
Research Article

Overloading human aortic smooth muscle cells with low density lipoprotein-cholesteryl esters reproduces features of atherosclerosis in vitro.

  • Text
  • PDF
Abstract

Human aortic smooth muscle cells accumulate only small amounts of cholesteryl esters in tissue culture, even when incubated for prolonged periods with high levels of plasma low density lipoprotein (LDL). This failure to overaccumulate LDL-cholesteryl esters is due to an LDL-mediated feedback suppression of the activity of the cell surface LDL receptor, a regulatory action that limits the rate at which the cells take up LDL. This regulatory system can be bypassed by incubating smooth muscle cells with LDL that has been given a strong positive charge by covalent linkage with N,N-dimethyl-1,3-propanediamine (DMPA-LDL). The unregulated uptake of DMPA-LDL produces a massive deposition of cholesteryl esters in the form of inclusions within the cell. These inclusions take up lipid stains and exhibit positive birefringence with formée crosses that are typical of liquid crystals of cholesteryl esters. By electron microscopy, the cholesteryl ester inclusions appear as homogeneous gray cytoplasmic lipid droplets. The current studies demonstrate that the unregulated uptake of LDL-cholesteryl esters by human aortic smooth muscle cells can reproduce in vitro the major biochemical and morphological alterations that occur within smooth muscle cells in vivo during the process of atherosclerosis.

Authors

J L Goldstein, R G Anderson, L M Buja, S K Basu, M S Brown

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 261 4
PDF 59 13
Scanned page 296 5
Citation downloads 74 0
Totals 690 22
Total Views 712
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts