Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108738

Exaggerated prostaglandin biosynthesis and its influence on renal resistance in the isolated hydronephrotic rabbit kidney.

K Nishikawa, A Morrison, and P Needleman

Find articles by Nishikawa, K. in: PubMed | Google Scholar

Find articles by Morrison, A. in: PubMed | Google Scholar

Find articles by Needleman, P. in: PubMed | Google Scholar

Published June 1, 1977 - More info

Published in Volume 59, Issue 6 on June 1, 1977
J Clin Invest. 1977;59(6):1143–1150. https://doi.org/10.1172/JCI108738.
© 1977 The American Society for Clinical Investigation
Published June 1, 1977 - Version history
View PDF
Abstract

Basal and hormone-stimulated prostaglandin biosynthesis was compared in isolated perfused rabbit kidneys with and without ureteral obstruction. At 72 h there was enhanced responsiveness to bradykinin in the ureter-obstructed hydronephrotic kidney. The amount of prostaglandin-like substance released from the perfused kidneys by 25 ng of bradykinin was 533+/-163 ng from the ureter-obstructed, 28+/-4 ng from the contralateral, and 26+/-3 ng from the normal kidney. The enhanced response was also noted with angiotensin II and with norepinephrine. This exaggerated responsiveness by the ureter-obstructed kidney could not be explained by decreased prostaglandin (PG) destruction or by decreased renal peptide inactivation (bradykinin or angiotensin). There was no enhanced PG biosynthesis with exogenous arachidonate, suggesting there was no increase in cyclo-oxygenase activity in the ureter-obstructed kidney. Renal tubular transport of PG from medulla to cortex was apparently not essential for the enhanced PG biosynthesis to hormone stimulation since the same exaggerated responses were noted during perfusion with the ureter ligated. The cyclo-oxygenase inhibitor, indomethacin, increased basal perfusion pressure in the obstructed kidney and enhanced the magnitude and duration of the renal vasoconstriction produced by angiotensin II in the hydronephrotic kidney. These results suggest that the local exaggerated biosynthesis of PG may be occurring in the cortical resistance vessels and may be important to the alteration in blood flow and excretory function that occur in ureteral obstruction.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1143
page 1143
icon of scanned page 1144
page 1144
icon of scanned page 1145
page 1145
icon of scanned page 1146
page 1146
icon of scanned page 1147
page 1147
icon of scanned page 1148
page 1148
icon of scanned page 1149
page 1149
icon of scanned page 1150
page 1150
Version history
  • Version 1 (June 1, 1977): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts