Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI108730

In Vitro Inhibition of Chick Embryo Lysyl Hydroxylase by Homogentisic Acid: A PROPOSED CONNECTIVE TISSUE DEFECT IN ALKAPTONURIA

John C. Murray, Kenneth A. Lindberg, and Sheldon R. Pinnell

Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710

Find articles by Murray, J. in: PubMed | Google Scholar

Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710

Find articles by Lindberg, K. in: PubMed | Google Scholar

Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710

Find articles by Pinnell, S. in: PubMed | Google Scholar

Published June 1, 1977 - More info

Published in Volume 59, Issue 6 on June 1, 1977
J Clin Invest. 1977;59(6):1071–1079. https://doi.org/10.1172/JCI108730.
© 1977 The American Society for Clinical Investigation
Published June 1, 1977 - Version history
View PDF
Abstract

Homogentisic acid inhibits the in vitro activity of chick embryo lysyl hydroxylase, a microsomal enzyme which catalyzes the transformation of certain lysyl residues in collagen to hydroxylysine. Chick embryo lysyl hydroxylase activity was measured as specific tritium release as tritium water from a [4,5-3H]lysine-labeled unhydroxylated collagen substrate prepared from chick calvaria. Kinetic studies revealed a linear, noncompetitive type of inhibition with respect to collagen substrate with a Ki of 120-180 μM. The inhibition by homogentisic acid was reversible in that enzyme activity could be restored after dialysis of preincubated mixtures of homogentisic acid with enzyme or substrate. The inhibition by homogentisic acid was competitive with respect to ascorbic acid, and the addition of reducing agents, such as ascorbic acid or 1,4-dithiothreitol, protected lysyl hydroxylase activity from homogentisic acid inhibition.

In organ cultures of embryonic chick calvaria, biosynthesis of hydroxylysine-derived intermolecular collagen cross-links was inhibited in a dose-dependent manner by 0.5-5 mM homogentisic acid. Because homogentisic acid inhibits the formation of hydroxylysine in a cell-free assay and in organ cultures, this compound must pass into the cells of calvaria to inhibit intracellular hydroxylysine formation and subsequently to diminish the reducible intermolecular cross-links of the newly synthesized collagen. We propose that the inhibition of lysyl hydroxylase and the resulting hydroxylsine-deficient, structurally modified collagen may be clinically significant in the defective connective tissue found in alkaptonuric patients.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1071
page 1071
icon of scanned page 1072
page 1072
icon of scanned page 1073
page 1073
icon of scanned page 1074
page 1074
icon of scanned page 1075
page 1075
icon of scanned page 1076
page 1076
icon of scanned page 1077
page 1077
icon of scanned page 1078
page 1078
icon of scanned page 1079
page 1079
Version history
  • Version 1 (June 1, 1977): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts