Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108684

Inhibition of thyroid-stimulating hormone stimulation of protein kinase, glucose oxidation, and phospholipid synthesis in thyroid slices previously exposed to the hormone.

J B Field, G Bloom, C Chou, and M E Kerins

Find articles by Field, J. in: JCI | PubMed | Google Scholar

Find articles by Bloom, G. in: JCI | PubMed | Google Scholar

Find articles by Chou, C. in: JCI | PubMed | Google Scholar

Find articles by Kerins, M. in: JCI | PubMed | Google Scholar

Published April 1, 1977 - More info

Published in Volume 59, Issue 4 on April 1, 1977
J Clin Invest. 1977;59(4):659–665. https://doi.org/10.1172/JCI108684.
© 1977 The American Society for Clinical Investigation
Published April 1, 1977 - Version history
View PDF
Abstract

Prior exposure of thyroid slices to thyrotropin (TSH) induced refractoriness to subsequent stimulation of the cyclic AMP system by the hormone. Although the inhibition is incomplete, we examined whether the reduction in cyclic AMP was sufficient to alter other metabolic effects of TSH. Bovine or dog thyroid slices were incubated with or without 5-100 mU/ml TSH for 1-2h, washed, and then incubated without hormone for 1-2h. Half of the slices not exposed to TSH initially were then incubated with buffer and half were exposed to 5-100 mU/ml TSH. Slices initially incubated with TSH were also incubated with or without TSH in the third incubation. During the refractory period, TSH activation of protein kinase was inhibited even though the hormone still caused some increase in cyclic AMP concentrations. However, protein kinase activity was fully responsive to dibutyryl cyclic AMP when slices were incubated with it during the third incubation. Stimulation of glucose oxidation by TSH was significantly decreased in thyroid slices previously incubated with the hormone. During refractoriness, stimulation of glucose oxidation caused by prostaglandin E1 and dibutyryl cyclic AMP was also significantly diminished but that due to acetylcholine was not. Thus even though dibutyryl cyclic AMP could fully activate protein kinase activity during refractoriness, its effect on glucose oxidation was still inhibited, suggesting that the metabolic block responsible for this refractoriness was distal to activation of protein kinase. Stimulation of 32Pi incorporation into phospholipid by TSH and acetylcholine was also inhibited during refractoriness. Despite reduction of the stimulatory effect of TSH, binding of 125ITSH was not modified by prior incubation of thyroid slices with TSH. These results indicate that changes in the TSH receptor are not responsible for the development of refractoriness and other metabolic sites besides activation of adenylate cyclase appear to be involved.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 659
page 659
icon of scanned page 660
page 660
icon of scanned page 661
page 661
icon of scanned page 662
page 662
icon of scanned page 663
page 663
icon of scanned page 664
page 664
icon of scanned page 665
page 665
Version history
  • Version 1 (April 1, 1977): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts