Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Thyroid-induced alterations in myocardial sodium-potassium-activated adenosine triphosphatase, monovalent cation active transport, and cardiac glycoside binding.
G D Curfman, … , T J Crowley, T W Smith
G D Curfman, … , T J Crowley, T W Smith
Published March 1, 1977
Citation Information: J Clin Invest. 1977;59(3):586-590. https://doi.org/10.1172/JCI108675.
View: Text | PDF
Research Article

Thyroid-induced alterations in myocardial sodium-potassium-activated adenosine triphosphatase, monovalent cation active transport, and cardiac glycoside binding.

  • Text
  • PDF
Abstract

The effects of thyroid hormone on guinea pig myocardial NaK-ATPase activity, transmembrane monovalent cation active transport, and cardiac glycoside binding were were examined. NaK-ATPase activities of left atrial and left ventricular homogenates of control and triiodothyronine (T3)-treated animals were determined, and compared to activities of skeletal muscle and liver. T3 administration was associated with a significant increase of 18% in left atrial and left ventricular NaK-ATPase specific activities. This increment was less than that noted in skeletal muscle (+42%) and liver (+30%). To determine if enhanced NaK-ATPase activity was accompanied by increased monovalent cation active transport, in vitro 86Rb+ uptake by left atrial strips and hemidiaphragms was measured. Transition from the euthyroid to the hyperthyroid state resulted in a 68% increase in active 86Rb+ uptake by left atrium, and a 62% increase in active uptake by diaphragm. Passive 86Rb+ uptake was not affected in either tissue. Ouabain binding by atrial and ventricular homogenates of T3-treated animals was increased by 19 and 17%, respectively, compared to controls, in close agreement with thyroid-induced increments in NaK-ATPase activiey. Taken together, these results are consistent with enhanced myocardial NaK-ATPase activity and monovalent cation activt transport due to an increase in the number of functional enzyme complexes.

Authors

G D Curfman, T J Crowley, T W Smith

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 91 1
PDF 43 6
Scanned page 153 2
Citation downloads 48 0
Totals 335 9
Total Views 344
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts