Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108658

Enzymatic basis for bioenergetic differences of alveolar versus peritoneal macrophages and enzyme regulation by molecular O2.

L M Simon, E D Robin, J R Phillips, J Acevedo, S G Axline, and J Theodore

Find articles by Simon, L. in: PubMed | Google Scholar

Find articles by Robin, E. in: PubMed | Google Scholar

Find articles by Phillips, J. in: PubMed | Google Scholar

Find articles by Acevedo, J. in: PubMed | Google Scholar

Find articles by Axline, S. in: PubMed | Google Scholar

Find articles by Theodore, J. in: PubMed | Google Scholar

Published March 1, 1977 - More info

Published in Volume 59, Issue 3 on March 1, 1977
J Clin Invest. 1977;59(3):443–448. https://doi.org/10.1172/JCI108658.
© 1977 The American Society for Clinical Investigation
Published March 1, 1977 - Version history
View PDF
Abstract

Alveolar macrophages (AM) and peritoneal macrophages (PM) originate from common precursor cells, but function in different O2 environments. In the present studies, the impact of different O2 tensions on cell metabolism has been quantitatively determined, an enzymatic basis for these differences established, and a mechanism which regulates enzymatic differences demonstrated. O2 consumption and lactate production were compared in rabbit AM and PM in air and nitrogen. In air, AM demonstrate significantly greater O2 utilization. In nitrogen, (where glycolysis is the major source of energy provision) lactate production is two- to threefold greater in the PM. A comparison of several enzymes of energy metabolism in AM and PM indicate that one basis for the differences in cell energetics is a difference in activity of key enzymes of both the oxidative phosphorlyative and the glycolytic sequences. Exposure of cultivated AM to hypoxic conditions results in changes in the activity of these enzymes such that the AM closely resembles the PM. A key enzyme in oxidative phosphorylation (cytochrome oxidase) shows decreased activity and reaches values similar to those found in the PM. A key enzyme in glycolysis (pyruvate kinase) shows increased activity to values resembling those found in the PM. These alterations in enzyme pattern occur in isolated cell systems, suggesting that molecular O2 modifies the intrinsic cellular regulation of some enzymes of energy metabolism. Alterations in O2 tension may lead to alterations of the rate of biosynthesis and (or) the rate of biodegradation of key enzymes involved in oxidative phosphorylation and glycolysis. In turn, the alteration of enzyme patterns leads to a more suitable bioenergetic pattern as a function of O2 availability.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 443
page 443
icon of scanned page 444
page 444
icon of scanned page 445
page 445
icon of scanned page 446
page 446
icon of scanned page 447
page 447
icon of scanned page 448
page 448
Version history
  • Version 1 (March 1, 1977): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts