Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108643

Ectopic beta-adrenergic receptor binding sites. possible molecular basis of aberrant catecholamine responsiveness of an adrenocortical tumor adenylate cyclase.

L T Williams, T B Gore, and R J Lefkowitz

Find articles by Williams, L. in: PubMed | Google Scholar

Find articles by Gore, T. in: PubMed | Google Scholar

Find articles by Lefkowitz, R. in: PubMed | Google Scholar

Published February 1, 1977 - More info

Published in Volume 59, Issue 2 on February 1, 1977
J Clin Invest. 1977;59(2):319–324. https://doi.org/10.1172/JCI108643.
© 1977 The American Society for Clinical Investigation
Published February 1, 1977 - Version history
View PDF
Abstract

The molecular basis for the aberrant catecholamine responsiveness of the adenylate cyclase of adrenocortical carcinoma 494 was explored. The adenylate cyclase of this corticosteroid-producing, transplanted, adrenal cancer of the rat was stimulated not only by adrenocorticotropic hormone and fluoride, but also by the beta-adrenergic agonist, isoproterenol. The adenylate cyclase of normal adrenal tissue was unresponsive to isoproterenol. Direct binding studies with the specific high affinity B-adrenergic ligand, (-)[3H]dihydroalprenolol, demonstrated the pressure of 0.094 pmol of specific binding sites per milligram of tumor membrane protein. By contrast, normal adrenal membranes contained too few binding sites to accurately measure and study using these techniques. The tumor binding sites had high affinity for (-)[3H] dihydroalprenolol with an equilibrium dissociation constant of 2.1 nM. Adrenergic agonists competed for the binding sites in an order of potency, [(-) isoproterenol greater than (-) epinephrine (-) norepinephrine], paralleling their order of potency as beta-adrenergic agonists. The beta-adrenergic antagonist, (-) propranolol, competed for binding, causing half-mzximal inhibition of specific binding at a concentration of 6 nM. The alpha-adrenergic antagonist, phentolamine, and several catecholamine metabolites and precursors did not effectively compete for the binding sites at high concentrations. Binding was stereospecific, the (+) stereoisomers of beta-adrenergic agonists and antagonists requiring 40- to 300-fold higher concentrations than the corresponding (-) stereoisomers to half maximally inhibit (-) [3H] dihydroalprenolol binding. These results indicate that adrenocortical carcinoma 494 membranes contain beta-adrenergic receptor-binding sites which are not normally present in membranes of adrenal tissue. These ectopic beta-adrenergic receptors presumably confer on the neoplastic tissue the catecholamine sensitivity of its adenylate cyclase.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 319
page 319
icon of scanned page 320
page 320
icon of scanned page 321
page 321
icon of scanned page 322
page 322
icon of scanned page 323
page 323
icon of scanned page 324
page 324
Version history
  • Version 1 (February 1, 1977): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts