Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108640

The pathophysiology of acid-base changes in chronically phosphate-depleted rats: bone-kidney interactions.

M Emmett, S Goldfarb, Z S Agus, and R G Narins

Find articles by Emmett, M. in: PubMed | Google Scholar

Find articles by Goldfarb, S. in: PubMed | Google Scholar

Find articles by Agus, Z. in: PubMed | Google Scholar

Find articles by Narins, R. in: PubMed | Google Scholar

Published February 1, 1977 - More info

Published in Volume 59, Issue 2 on February 1, 1977
J Clin Invest. 1977;59(2):291–298. https://doi.org/10.1172/JCI108640.
© 1977 The American Society for Clinical Investigation
Published February 1, 1977 - Version history
View PDF
Abstract

Acid-base disturbances may develop secondary to the changes in renal tubular function and bone dynamics which attend phosphate depletion (PD). This work characterizes the acid-base status of rats fed a low phosphate diet. After 18 days, PD rats had marked calciuria (pair-fed controls: 0.3 +/- 0.2; PD 32.2 +/- 2.5 mueq/h; P less than 0.001), severe bicarbonaturia (controls: 0; PD 17.6 +/- 0.2 meq/h; P less than 0.001), and negative net acid excretion (controls: 44.5 +/- 2.9; PD: --6.6 +/- 2.5 meq/h; P less than 0.001), but plasma pH, HCO3, and PCO2 were equal in both groups. After 45 days, plasma HCO3 fell to 21.1 +/- 0.9 meq/liter in PD (controls: 23.6 +/- 0.5 meq/liter; P less than 0.05), while bicarbonaturia (controls: 0.4 +/- 0.2; PD: 3.8 +/- 1 mueq/h; P less than 0.02) and calciuria were present but diminished. These data suggested the coexistence of bone HCO3 mobilization and renal HCO3 wasting in PD. To test this thesis, bicarbonaturia was eliminated by nephrectomy. 24 h later plasma HCO3 was higher in PD rats (controls: 19.3 +/- 0.02; PD: 22.6 +/- 0.8 meq/liter; P less than 0.05), consistend with the presence of extrarenal HCO3 production. After inhibition of bone resorption with colchicine (1 mg/kg), plasma HCO3 decreased to 16.8 +/- 0.6 meq/liter in PD rats (controls): 26.4 +/- 1 meq/liter; P less than 0.001) while bicarbonaturia persisted. These data indicate that the plasma HCO3 in PD is the net result of renal HCO3 wasting and bone HCO3 mobilization. These combined effects maintain normal blood HCO3 initially (18 days) but with time (45 days), bone resorption diminishes and the acidifying renal tubular defect predominates.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 291
page 291
icon of scanned page 292
page 292
icon of scanned page 293
page 293
icon of scanned page 294
page 294
icon of scanned page 295
page 295
icon of scanned page 296
page 296
icon of scanned page 297
page 297
icon of scanned page 298
page 298
Version history
  • Version 1 (February 1, 1977): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts