Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108629

Origin of acetyl strophanthidin-induced ventricular arrhythmias.

P O Ettinger, J Calabro, T J Regan, and H A Oldewurtel

Find articles by Ettinger, P. in: PubMed | Google Scholar

Find articles by Calabro, J. in: PubMed | Google Scholar

Find articles by Regan, T. in: PubMed | Google Scholar

Find articles by Oldewurtel, H. in: PubMed | Google Scholar

Published February 1, 1977 - More info

Published in Volume 59, Issue 2 on February 1, 1977
J Clin Invest. 1977;59(2):193–202. https://doi.org/10.1172/JCI108629.
© 1977 The American Society for Clinical Investigation
Published February 1, 1977 - Version history
View PDF
Abstract

To examine the origin of digitalis-induced ventricular tachycardia (VT), acetyl strophanthidin (AS) (25 mug/min) was perfused into a limited zone of myocardium in intact anesthetized dogs through a catheter placed fluoroscopically in the left anterior descending artery without ischemia. A second catheter in the great cardiac vein sampled venous effluent from this region. His and left bundle branch depolarizations were recorded and bipolar intramural electrograms from endocardial and epicardial sites within the anterior descending region were obtained. No conduction alterations preceded arrhythmia. Cardiac venous K+ rose from 3.3 +/- to 4.4 +/- 0.2 meq/liter (P less than 0.001), indicating egress from the perfused zone. 10 animals (Group 1) were sacrificed 2 min after onset of VT while 11 (Group 2) continued until fibrillation (4-14 min). All showed normal (endocardial leads to epicardial) transmural depolarization during sinus rhythm, but 10/21 demonstrated reversal, usually late during VT, including 8/11 in Group 2. Epicardial activation preceded fascicular activation and QRS. Recordings from the border and circumflex regions in 10 additional dogs (Group 3) demonstrated activation reversal only in the border zone. Myocardial K+ was reduced (mean 63 +/- 1 mueq/g) and Na+ increased (mean 41 +/- 2 mueq/g) in the perfused zone (nonperfused circumflex area K+ 72 +/- 1, Na+ 33 +/- 1 mueq/g, P less than 0.001 for both); changes were similar in inner and outer ventricular wall. In related experiments, subepicardial injections of AS induced activation reversal within the immediate area, similar to recordings during coronary infusion. Reversed transmural activation with early epicardial depolarization suggest VT arises within myocardium; electrolyte gradients between adjacent regions may be causative.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 193
page 193
icon of scanned page 194
page 194
icon of scanned page 195
page 195
icon of scanned page 196
page 196
icon of scanned page 197
page 197
icon of scanned page 198
page 198
icon of scanned page 199
page 199
icon of scanned page 200
page 200
icon of scanned page 201
page 201
icon of scanned page 202
page 202
Version history
  • Version 1 (February 1, 1977): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts