Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108620

The distribution of blood flow, oxygen consumption, and work output among the respiratory muscles during unobstructed hyperventilation.

C H Robertson Jr, M A Pagel, and R L Johnson Jr

Find articles by Robertson, C. in: PubMed | Google Scholar

Find articles by Pagel, M. in: PubMed | Google Scholar

Find articles by Johnson, R. in: PubMed | Google Scholar

Published January 1, 1977 - More info

Published in Volume 59, Issue 1 on January 1, 1977
J Clin Invest. 1977;59(1):43–50. https://doi.org/10.1172/JCI108620.
© 1977 The American Society for Clinical Investigation
Published January 1, 1977 - Version history
View PDF
Abstract

An animal model was developed to describe respiratory muscle work output, blood flow, and oxygen consumption during mechanical ventilation, resting spontaneous ventilation, and the increased unobstructed ventilatory efforts induced by CO2 rebreathing. Almost all of the work of breathing was inspiratory work at all ventilatory levels; thus, only blood flows to the diaphragm and external intercostals increased in the transition from mechanical to spontaneous ventilation, and they further increased linearly as ventilatory work was incrementally augmented ninefold by CO2 rebreathing. No other muscles of inspiration manifest increased blood flows. A small amount of expiratory work was measured at high ventilatory volumes during which two expiratory muscles (transverse abdominal and intercostals) had moderate increases in blood flow. Blood pressure did not change, but cardiac output doubled. Arterial-venous oxygen content difference across the diaphragm increased progressively, so oxygen delivery was augmented by both increased blood flow and increased oxygen extraction at all work loads. Oxygen consumption increased linearly as work of breathing increased, so efficiency did not change significantly. The mean efficiency of the respiratory muscles was 15.5%. These results differ significantly from the patterns previously observed by us during increased work of breathing induced by inspiratory resistance, suggesting a different distribution of work load among the various muscles of respiration, a different fractionation of oxygen delivery between blood flow and oxygen extraction, and a higher efficiency when shortening, not tension development, of the muscle is increased.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 43
page 43
icon of scanned page 44
page 44
icon of scanned page 45
page 45
icon of scanned page 46
page 46
icon of scanned page 47
page 47
icon of scanned page 48
page 48
icon of scanned page 49
page 49
icon of scanned page 50
page 50
Version history
  • Version 1 (January 1, 1977): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts