Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108613

Superoxide production and reducing activity in human platelets.

A J Marcus, S T Silk, L B Safier, and H L Ullman

Find articles by Marcus, A. in: PubMed | Google Scholar

Find articles by Silk, S. in: PubMed | Google Scholar

Find articles by Safier, L. in: PubMed | Google Scholar

Find articles by Ullman, H. in: PubMed | Google Scholar

Published January 1, 1977 - More info

Published in Volume 59, Issue 1 on January 1, 1977
J Clin Invest. 1977;59(1):149–158. https://doi.org/10.1172/JCI108613.
© 1977 The American Society for Clinical Investigation
Published January 1, 1977 - Version history
View PDF
Abstract

Human platelets contain the cuprozinc (cytoplasmic) and manganese (mitochondrial) forms of superoxide dismutase. Nevertheless, superoxide radicals were detectable in the surrounding medium of metabolically viable platelet suspensions by using two assay systems: cytochrome c and nitroblue tetrazolium. The quantity of superoxide generated by platelets (5 X 10(5) superoxide radicals/platelet per 10 min) was constant and did not increase after aggregation by agents such as collagen and thrombin. The superoxide-generating system was present in the supernate of both aggregated and resting platelets and therefore was not platelet-bound. Platelet superoxide production was unaffected by prior ingestion of aspirin, indicating that the prostaglandin and thromboxane pathways were not involved. Both resting and aggregated platelets exhibited a reductive capacity toward cytochrome c and nitroblue tetrazolium which was unrelated to superoxide production. Furthermore, the aggregation process always resulted in a marked increase in this reduction. The nonsuperoxide reduction associated with aggregation was found to be membrane bound and to decrease with an apparent first order reaction rate (k1 = 0.067 min-1). In addition, accumulative, time-dependent nonsuperoxide-related cytochrome c reduction was also detected. Since there is no superoxide dismutase in plasma, the presence of superoxide radicals in the surrounding medium of platelets may have in vitro significance for platelet and leukocyte concentration and storage and in vivo significance for hemostasis, coagulation, and thrombosis. The nonsuperoxide-related reducing activities may represent a biochemical basis for platelet-blood vessel interactions, with particular reference to blood vessel integrity.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 149
page 149
icon of scanned page 150
page 150
icon of scanned page 151
page 151
icon of scanned page 152
page 152
icon of scanned page 153
page 153
icon of scanned page 154
page 154
icon of scanned page 155
page 155
icon of scanned page 156
page 156
icon of scanned page 157
page 157
icon of scanned page 158
page 158
Version history
  • Version 1 (January 1, 1977): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts