Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Potasssium transport in human blood lymphocytes treated with phytohemagglutinin.
G B Segel, M A Lichtman
G B Segel, M A Lichtman
Published December 1, 1976
Citation Information: J Clin Invest. 1976;58(6):1358-1369. https://doi.org/10.1172/JCI108591.
View: Text | PDF
Research Article

Potasssium transport in human blood lymphocytes treated with phytohemagglutinin.

  • Text
  • PDF
Abstract

We have confirmed that phytohemagglutinin (PHA) rapidly enhances the uptake of potassium (K+) by human blood lymphocytes. PHA, however, did not produce an increase in lymphocyte K+ concentration. The apparent steady-state of cell K+ concentration despite the marked increase in uptake of 42K+ could be explained by either an increase in K+-K+ exchange or an increase in concentrative (active) K+ accumulation in association with an increase in the leak of K+ from the cell. We compared, therefore, the uptake of 42K+ with the decrement in cellular K+ content when active transport was inhibited by ouabain. These studies established that K+-K+ exchange was negligible in human blood lymphocytes and that the increase in 42K+ uptake after PHA treatment represented concentrative transport. Our studies did indicate that 42K+ exodus from PHA treated lymphocytes increased markedly from 19 to 38 mmol-1 cell water-1-h-1. Within the same time period K+ influx into PHA-treated lymphocytes increased from 20 to 38 mmol-1 cell water-1-h-1. Thus, PHA produces a marked increase in the permeability of the lymphocyte membrane to K+, and the increase in active K+ influx in PHA-treated lymphocytes may represent a homeostatic response by the membrane K+ transport system to the increase in K+ efflux. Increased K+ turnover was observed at the lowest concentrations of PHA which produced an observable increase in [3H]thymidine incorporation into DNA. Thus, PHA produces an increase in K+ permeability that closely parallels its mitogenic effect. The rapid increase in K+ influx preceding blastogenesis and mitogenesis is required, therefore, to maintain normal intracellular K+ concentration. An adequate intracellular K+ concentration is essential for the synthetic processes required for cell transformation or division.

Authors

G B Segel, M A Lichtman

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 164 0
PDF 36 11
Scanned page 393 5
Citation downloads 53 0
Totals 646 16
Total Views 662
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts