Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108585

The Sézary syndrome: a malignant proliferation of helper T cells.

S Broder, R L Edelson, M A Lutzner, D L Nelson, R P MacDermott, M E Durm, C K Goldman, B D Meade, and T A Waldmann

Find articles by Broder, S. in: PubMed | Google Scholar

Find articles by Edelson, R. in: PubMed | Google Scholar

Find articles by Lutzner, M. in: PubMed | Google Scholar

Find articles by Nelson, D. in: PubMed | Google Scholar

Find articles by MacDermott, R. in: PubMed | Google Scholar

Find articles by Durm, M. in: PubMed | Google Scholar

Find articles by Goldman, C. in: PubMed | Google Scholar

Find articles by Meade, B. in: PubMed | Google Scholar

Find articles by Waldmann, T. in: PubMed | Google Scholar

Published December 1, 1976 - More info

Published in Volume 58, Issue 6 on December 1, 1976
J Clin Invest. 1976;58(6):1297–1306. https://doi.org/10.1172/JCI108585.
© 1976 The American Society for Clinical Investigation
Published December 1, 1976 - Version history
View PDF
Abstract

The Sézary syndrome is a frequently lethal disease characterized by circulating malignant cells of thymus-derived (T)-cell origin. The capacity of circulating malignant lymphocytes from patients with this syndrome to synthesize immunoglobulins and to function as helper or suppressor cells regulating immunoglobulin synthesis by bone marrow-derived (B) lymphocytes was determined. Peripheral blood lymphocytes from normal individuals had geometric mean immunoglobulin synthetic rates of 4,910 ng for IgM, 1,270 ng for IgA, and 1,625 ng for IgG per 2 X 10(6) cells in culture with pokeweed mitogen for 7 days. Purified normal B cells had geometric mean synthetic rates of 198 ng for IgM, 145 ng for IgA, and 102 ng for IgG. Leukemic cells from patients with the Sézary syndrome produced essentially no immunoglobulins. Adding normal T cells to normal B cells restored their immunoglobin producing capacity. Leukemic cells from four of five patients tested had a similar capacity to help immunoglobulin synthesis by purified normal B cells. Additionally, Sézary cells from one patient studied induced a nearly 10-fold increase in IgA synthesis by lymphocytes from a child with ataxia telangiectasia and selective IgA deficiency. Furthermore, these Sézary cells induced more than a 500-fold increase in IgG and IgA synthesis by lymphocytes from a child with Nezelof's syndrome. When Sézary cells were added to normal unfractionated lymphocytes, they did not suppress immunoglobulin biosynthesis. In addition, unlike the situation observed when large numbers of normal T cells were added to purified B cells, there was no depression of immunoglobulin synthesis at very high malignant T-cell to B-cell ratios. These data support the view that Sézary T cells do not express suppressor cell activity. The results presented in this paper suggest that neoplastic lymphocytes from the majority of patients with the Sézary syndrome originate from a subset of T cells programmed exclusively for helper-like interactions with B cells in their production of immunoglobulin molecules.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1297
page 1297
icon of scanned page 1298
page 1298
icon of scanned page 1299
page 1299
icon of scanned page 1300
page 1300
icon of scanned page 1301
page 1301
icon of scanned page 1302
page 1302
icon of scanned page 1303
page 1303
icon of scanned page 1304
page 1304
icon of scanned page 1305
page 1305
icon of scanned page 1306
page 1306
Version history
  • Version 1 (December 1, 1976): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts