Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Critical role for thyroid hormone receptor β2 in the regulation of paraventricular thyrotropin-releasing hormone neurons
E. Dale Abel, … , Joel K. Elmquist, Fredric E. Wondisford
E. Dale Abel, … , Joel K. Elmquist, Fredric E. Wondisford
Published April 15, 2001
Citation Information: J Clin Invest. 2001;107(8):1017-1023. https://doi.org/10.1172/JCI10858.
View: Text | PDF
Article

Critical role for thyroid hormone receptor β2 in the regulation of paraventricular thyrotropin-releasing hormone neurons

  • Text
  • PDF
Abstract

Thyroid hormone thyroxine (T4) and tri-iodothyronine (T3) production is regulated by feedback inhibition of thyrotropin (TSH) and thyrotropin-releasing hormone (TRH) synthesis in the pituitary and hypothalamus when T3 binds to thyroid hormone receptors (TRs) interacting with the promoters of the genes for the TSH subunit and TRH. All of the TR isoforms likely participate in the negative regulation of TSH production in vivo, but the identity of the specific TR isoforms that negatively regulate TRH production are less clear. To clarify the role of the TR-β2 isoform in the regulation of TRH gene expression in the hypothalamic paraventricular nucleus, we examined preprothyrotropin-releasing hormone (prepro-TRH) expression in mice lacking the TR-β2 isoform under basal conditions, after the induction of hypothyroidism with propylthiouracil, and in response to T3 administration. Prepro-TRH expression was increased in hypothyroid wild-type mice and markedly suppressed after T3 administration. In contrast, basal TRH expression was increased in TR-β2–null mice to levels seen in hypothyroid wild-type mice and did not change significantly in response to induction of hypothyroidism or T3 treatment. However, the suppression of TRH mRNA expression in response to leptin reduction during fasting was preserved in TR-β2–null mice. Thus TR-β2 is the key TR isoform responsible for T3-mediated negative-feedback regulation by hypophysiotropic TRH neurons.

Authors

E. Dale Abel, Rexford S. Ahima, Mary-Ellen Boers, Joel K. Elmquist, Fredric E. Wondisford

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 605 59
PDF 54 12
Figure 217 16
Table 39 0
Citation downloads 52 0
Totals 967 87
Total Views 1,054
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts