Thyroid hormone thyroxine (T4) and tri-iodothyronine (T3) production is regulated by feedback inhibition of thyrotropin (TSH) and thyrotropin-releasing hormone (TRH) synthesis in the pituitary and hypothalamus when T3 binds to thyroid hormone receptors (TRs) interacting with the promoters of the genes for the TSH subunit and TRH. All of the TR isoforms likely participate in the negative regulation of TSH production in vivo, but the identity of the specific TR isoforms that negatively regulate TRH production are less clear. To clarify the role of the TR-β2 isoform in the regulation of TRH gene expression in the hypothalamic paraventricular nucleus, we examined preprothyrotropin-releasing hormone (prepro-TRH) expression in mice lacking the TR-β2 isoform under basal conditions, after the induction of hypothyroidism with propylthiouracil, and in response to T3 administration. Prepro-TRH expression was increased in hypothyroid wild-type mice and markedly suppressed after T3 administration. In contrast, basal TRH expression was increased in TR-β2–null mice to levels seen in hypothyroid wild-type mice and did not change significantly in response to induction of hypothyroidism or T3 treatment. However, the suppression of TRH mRNA expression in response to leptin reduction during fasting was preserved in TR-β2–null mice. Thus TR-β2 is the key TR isoform responsible for T3-mediated negative-feedback regulation by hypophysiotropic TRH neurons.
E. Dale Abel, Rexford S. Ahima, Mary-Ellen Boers, Joel K. Elmquist, Fredric E. Wondisford
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 605 | 59 |
54 | 12 | |
Figure | 217 | 16 |
Table | 39 | 0 |
Citation downloads | 52 | 0 |
Totals | 967 | 87 |
Total Views | 1,054 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.