Granulocytes engaged in the phagocytosis of opsonized zymosan emit light by a process that is inhibited by superoxide dismutase and catalase. In the present report is is shown that light emission is the result of reactions between certain unspecified constituents of the ingested particles and some or all of the oxidizing agents (H2O2, O2),and possibly the hydroxyl radical and singlet oxygen) produced by the activated cells. This conclusion is based on a study of light emission by both activated cells ans artificial O2 generating system containing xanthine oxidase and purine. With these two systems light production required the presence of both zymosan and oxidizing agent, suggesting that the oxidation of particle components is necessary for luminescence to occur. The characteristics of the emission spectrum as well as the finding that granulocytes activated by a nonparticulate agent (F-) fail to liminesce show that light emission by the relaxation of singlet oxygen to the ground state does not contribute in a major way to the chemiluminescence of phagocytosing granulocytes; whether singlet oxygen contributes to chemiluminescence in other ways cannot be decided from the data available. Inasmuch as the oxidation of constituents of ingested particles is an important bacterial killing mechanism in the granulocyte, chemiluminescence may be viewed as a manifestation of the microbicidal activity of the cell.
B D Cheson, R L Christensen, R Sperling, B E Kohler, B M Babior
Usage data is cumulative from October 2024 through October 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 220 | 4 |
91 | 8 | |
Scanned page | 172 | 2 |
Citation downloads | 51 | 0 |
Totals | 534 | 14 |
Total Views | 548 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.