Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108460

The role of adrenergic mechanisms in the substrate and hormonal response to insulin-induced hypoglycemia in man.

A J Garber, P E Cryer, J V Santiago, M W Haymond, A S Pagliara, and D M Kipnis

Find articles by Garber, A. in: PubMed | Google Scholar

Find articles by Cryer, P. in: PubMed | Google Scholar

Find articles by Santiago, J. in: PubMed | Google Scholar

Find articles by Haymond, M. in: PubMed | Google Scholar

Find articles by Pagliara, A. in: PubMed | Google Scholar

Find articles by Kipnis, D. in: PubMed | Google Scholar

Published July 1, 1976 - More info

Published in Volume 58, Issue 1 on July 1, 1976
J Clin Invest. 1976;58(1):7–15. https://doi.org/10.1172/JCI108460.
© 1976 The American Society for Clinical Investigation
Published July 1, 1976 - Version history
View PDF
Abstract

Sequential determinations of glucose outflow and inflow, and rates of gluconeogenesis from alanine, before, during and after insulin-induced hypoglycemia were obtained in relation to alterations in circulating epinephrine, norepinephrine, glucagon, cortisol, and growth hormone in six normal subjects. Insulin decreased the mean (+/-SEM) plasma glucose from 89+/-3 to 39+/-2 mg/dl 25 min after injection, but this decline ceased despite serum insulin levels of 153+/-22 mul/ml. Before insulin, glucose inflow and outflow were constant averaging 125.3+/-7.1 mg/kg per h. 15 min after insulin, mean glucose outflow increased threefold, but then decreased at 25 min, reaching a rate 15% less than the preinsulin rate. Glucose inflow decreased 80% 15 min after insulin, but increased at 25 min, reaching a maximum of twice the basal rate. Gluconeogenesis from alanine decreased 68% 15 min after insulin, but returned to preinsulin rates at 25 min, and remained constant for the next 25 min, after which it increased linearly. A fourfold increase in mean plasma epinephrine was found 20 min after insulin, with maximal levels 50 times basal. Plasma norepinephrine concentrations first increased significantly at 25 min after insulin, whereas significantly increased levels of cortisol and glucagon occurred at 30 min, and growth hormone at 40 min after insulin. Thus, insulin-induced hypoglycemia in man results from both a decrease in glucose production and an increase in glucose utilization. Accelerated glycogenolysis produced much of the initial, posthypoglycemic increment in glucose production. The contribution of glycogenolysis decreased with time, while that of gluconeogenesis from alanine increased. Of the hormones studied, only the increments in plasma catecholamines preceded or coincided with the measured increase in glucose production after hypoglycemia. It therefore seems probable that adrenergic mechanisms play a major role in the initiation of counter-regulatory responses to insulin-induced hypoglycemia in man.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 7
page 7
icon of scanned page 8
page 8
icon of scanned page 9
page 9
icon of scanned page 10
page 10
icon of scanned page 11
page 11
icon of scanned page 12
page 12
icon of scanned page 13
page 13
icon of scanned page 14
page 14
icon of scanned page 15
page 15
Version history
  • Version 1 (July 1, 1976): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts