Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108319

Comparative properties of the Charcot-Leyden crystal protein and the major basic protein from human eosinophils.

G J Gleich, D A Loegering, K G Mann, and J E Maldonado

Find articles by Gleich, G. in: PubMed | Google Scholar

Find articles by Loegering, D. in: PubMed | Google Scholar

Find articles by Mann, K. in: PubMed | Google Scholar

Find articles by Maldonado, J. in: PubMed | Google Scholar

Published March 1, 1976 - More info

Published in Volume 57, Issue 3 on March 1, 1976
J Clin Invest. 1976;57(3):633–640. https://doi.org/10.1172/JCI108319.
© 1976 The American Society for Clinical Investigation
Published March 1, 1976 - Version history
View PDF
Abstract

Guinea pig eosinophil granules contain a protein, the major basic protein (MBP), which accounts for more than half of the total granule protein, has a high content of arginine, and displays a remarkable tendency to form disulfide-linked aggregates. In this study we have purified a similar protein from human eosinophil granules and have compared the human MBP to the protein comprising the Charcot-Leyden crystal (CLC). Eosinophils from patients with various diseases were purified and disrupted, and the granule fraction was obtained. Examination of the granule fraction by transmission electron microscopy showed numerous typical eosinophil granules. Analyses of granule lysates by gel filtration and by polyacrylamide gel electrophoresis revealed the presence of peroxidase and MBP with properties similar to that previously found in guinea pig eosinophil granules. The human MBP had a molecular weight of 9,200, contained less than 1% carbohydrate, was rich in arginine, and readily formed disulfide-bonded aggregates. CLC were prepared from eosinophil-rich cell suspensions by homogenization in hypotonic saline. The supernates following centrifugation of cell debris spontaneously formed CLC. Analysis of CLC revealed the presence of a protein with a molecular weight of 13,000 containing 1.2% carbohydrate. The protein displayed a remarkable tendency to aggregate even in the presence of 0.2 M acetic acid. Human MBP and CLC protein differed in their molecular weights, carbohydrate compositions, and amino acid analyses. Mixtures of the MBP and the CLC protein yielded two bands in polyacrylamide gel electrophoresis. Neither eosinophil protein increased vascular permeability in the guinea pig skin or contracted the guinea pig ileum. The results indicate that the human MBP and the CLC are distinct substances with properties such that one cannot be derived from the other.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 633
page 633
icon of scanned page 634
page 634
icon of scanned page 635
page 635
icon of scanned page 636
page 636
icon of scanned page 637
page 637
icon of scanned page 638
page 638
icon of scanned page 639
page 639
icon of scanned page 640
page 640
Version history
  • Version 1 (March 1, 1976): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts