Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108312

Heart muscle performance after experimental viral myocarditis.

C O Adesanya, A H Goldberg, W P Phear, K A Thorp, N A Young, and W H Abelmann

Find articles by Adesanya, C. in: PubMed | Google Scholar

Find articles by Goldberg, A. in: PubMed | Google Scholar

Find articles by Phear, W. in: PubMed | Google Scholar

Find articles by Thorp, K. in: PubMed | Google Scholar

Find articles by Young, N. in: PubMed | Google Scholar

Find articles by Abelmann, W. in: PubMed | Google Scholar

Published March 1, 1976 - More info

Published in Volume 57, Issue 3 on March 1, 1976
J Clin Invest. 1976;57(3):569–575. https://doi.org/10.1172/JCI108312.
© 1976 The American Society for Clinical Investigation
Published March 1, 1976 - Version history
View PDF
Abstract

As part of an inquiry into possible antecedents of idiopathic cardiomyopathy, acute experimental coxsackie virus myocarditis was studied for late structural and functional sequelae. Myocarditis was induced in 12- and 22-day-old hamsters by inoculation with coxsackie virus B3. Early viremia occurred, followed by virus replication in heart muscle. Maximum peak developed tension (Tpd) of isometrically contracting isolated heart muscle was depressed 17 and 43% in the animals inoculated at 12 days, and studied 18 and 90 days later, respectively, as compared to their uninoculated controls. In both infected groups, less muscle stretch was required to reach the length at which Tpd was produced. Animals studied 180 days after inoculation did not differ from controls. The muscles from animals inoculated at 22 days of age and studied 18 days later showed a 15% depression of Tpd compared to their controls. Glycerinated muscles from this infected group developed 50% less tension than their controls. The muscles of hamsters inoculated with virus at 22 days and studied 90 and 180 days later showed no change in Tpd. The data suggest that contractility and compliance of heart muscle are decreased 18 days after inoculation, but recover by 90 days if the animals are inoculated at age 22 days. However, if the animals are inoculated at a younger age (12 days), depression of myocardial performance persists for at least an additional 90 days. It is concluded that the inflammatory stage of experimental acute coxsackie virus B3 myocarditis in the Syrian golden hamster may be followed by residual alterations in contractile proteins and myocardial function.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 569
page 569
icon of scanned page 570
page 570
icon of scanned page 571
page 571
icon of scanned page 572
page 572
icon of scanned page 573
page 573
icon of scanned page 574
page 574
icon of scanned page 575
page 575
Version history
  • Version 1 (March 1, 1976): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts