Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108310

Responsiveness to glucagon in fetal hearts. Species variability and apparent disparities between changes in beating, adenylate cyclase activation, and cyclic AMP concentration.

K Wildenthal, D O Allen, J Karlsson, J R Wakeland, and C M Clark Jr

Find articles by Wildenthal, K. in: PubMed | Google Scholar

Find articles by Allen, D. in: PubMed | Google Scholar

Find articles by Karlsson, J. in: PubMed | Google Scholar

Find articles by Wakeland, J. in: PubMed | Google Scholar

Find articles by Clark, C. in: PubMed | Google Scholar

Published March 1, 1976 - More info

Published in Volume 57, Issue 3 on March 1, 1976
J Clin Invest. 1976;57(3):551–558. https://doi.org/10.1172/JCI108310.
© 1976 The American Society for Clinical Investigation
Published March 1, 1976 - Version history
View PDF
Abstract

Previous studies of the ability of the immature heart to respond to glucagon have yielded conflicting results. To test the possibility that the apparent discrepancies might be explained in part by species variability, isolated hearts of fetal mice and rats (13-22 days' gestational age) were studied under identical conditions in vitro. Changes in atrial rate and ventricular contractility were measured in spontaneously beating hearts exposed to glucagon, and activation of adenylate cyclase was assayed in cardiac homogenates. In mice of 16 days' gestational age or less, there was no change in heart rate in response to glucagon; at 17-18 days, minimal responsiveness was present; and after 19 days, 10muM glucagon caused an increase in spontaneous atrial rate of 30 +/- 4% (SEM) (P less than 0.001). Measurement of the extent and speed of volume displacement of the isotonically contracting hearts with a specially constructed capacitance transducer revealed that ventricular inotropic responsiveness also appeared after 17-19 days. Cardiac stores of glycogen were reduced in older hearts exposed to glucagon, but not in those aged less than 16 days. In contrast, glucagon failed to activate adenylate cyclase in homogenates of hearts of fetal mice at any age. Furthermore, glucagon failed to elicit an increase in the concentration of cyclic AMP in spontaneously beating hearts that developed tachycardia. Responses in hearts of fetal rats were distinctly different from those in mouse hearts: at no age was there any change in heart rate, strength of contraction, glycogen content, or adenylate cyclase activation. Thus, there are major species differences in cardiac pharmacological maturation. Although the mouse heart develops the ability to increase its rate and strength of contraction and to undergo glycogenolysis in response to glucagon well before birth, the rat heart does not. In addition, there is an apparent disparity in late fetal mouse hearts between the ability of glucagon to induce functional responses and its ability to stimulate adenylate cyclase and increase cyclic AMP levels. It is impossible, of course, to rule out absolutely the possibility that localized increases in a critical cyclic AMP pool were present but too small to measure in the entire tissue. Nevertheless, the most obvious interpretation of our results is that they are compatible with the hypothesis that glucagon may exert some of its hemodynamic effects independently from the adenylate cyclase-cyclic AMP system in the late-fetal mouse heart.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 551
page 551
icon of scanned page 552
page 552
icon of scanned page 553
page 553
icon of scanned page 554
page 554
icon of scanned page 555
page 555
icon of scanned page 556
page 556
icon of scanned page 557
page 557
icon of scanned page 558
page 558
Version history
  • Version 1 (March 1, 1976): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts