Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108284

Effects of a 3-day fast and of ethanol on splanchnic metabolism of FFA, amino acids, and carbohydrates in healthy young men.

B M Wolfe, J R Havel, E B Marliss, J P Kane, J Seymour, and S P Ahuja

Find articles by Wolfe, B. in: PubMed | Google Scholar

Find articles by Havel, J. in: PubMed | Google Scholar

Find articles by Marliss, E. in: PubMed | Google Scholar

Find articles by Kane, J. in: PubMed | Google Scholar

Find articles by Seymour, J. in: PubMed | Google Scholar

Find articles by Ahuja, S. in: PubMed | Google Scholar

Published February 1, 1976 - More info

Published in Volume 57, Issue 2 on February 1, 1976
J Clin Invest. 1976;57(2):329–340. https://doi.org/10.1172/JCI108284.
© 1976 The American Society for Clinical Investigation
Published February 1, 1976 - Version history
View PDF
Abstract

Splanchnic metabolism was studied to quantify changes underlying the fatty liver, hyperlipemia, and hypoglycemia produced by ethanol. Four subjects fasted for 15 h were compared with five subjects fasted for 69 h under basal conditions and during continuous intravenous infusion of sufficient ethanol to give a concentration of 3-5 mM in arterial blood plasma. Splanchnic storage of fatty acids was estimated from the difference between uptake of FFA and secretion of derived products. Basal values for splanchnic uptake of FFA were twofold higher after the 69-h fast while splanchnic storage of fatty acids and production of ketone bodies increased threefold. Values for basal secreation into the blood of triglycerides derived from FFA were similar in the two groups. In both nutritional states, the fraction of FFA taken up in the splanchnic region oxidized to ketone bodies and to CO2 fell when ethanol was given because of preferential oxidation of ethanol to acetate, and the fraction esterified rose. However, systemic transport and splanchnic uptake of FFA fell with ethanol in subjects fasted 15 h, so that neither storage of triglycerides in splanchnic tissues nor secretion into the blood increased. In subjects fasted 69 h, ethanol increased transport of FFA and splanchnic storage of fat. In all but one subject it also increased secretion of triglycerides into the blood. The concentration of glucose in blood fell during ethanol infusion in all five subjects undergoing the 69-h fast. Mean splanchnic glucose production was maintained at about one-half of the pre-ethanol value, despite virtual cessation of splanchnic uptake of lactate and of those amino acids that are metabolized via malate. Quantitative estimates of extrasplanchnic metabolism suggest that enhanced formation of alpha-glycerophosphate from glucose, in addition to impaired hepatic gluconeogenesis, may contribute to ethanol-induced hypoglycemia in man.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 329
page 329
icon of scanned page 330
page 330
icon of scanned page 331
page 331
icon of scanned page 332
page 332
icon of scanned page 333
page 333
icon of scanned page 334
page 334
icon of scanned page 335
page 335
icon of scanned page 336
page 336
icon of scanned page 337
page 337
icon of scanned page 338
page 338
icon of scanned page 339
page 339
icon of scanned page 340
page 340
Version history
  • Version 1 (February 1, 1976): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts